Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570757432> ?p ?o ?g. }
- W1570757432 abstract "Correspondence should be addressed to E.S.B. (esb@media.mit.edu). 12These authors contributed equally to this work. Accession codes. GenBank: KM000925, KM000926, KM000927 and KM000928. Note: Any Supplementary Information and Source Data files are available in the online version of the paper. AUTHOR CONTRIBUTIONS A.S.C. and E.S.B. coordinated all experiments and data analysis. A.S.C. designed and developed Jaws and cloned all constructs. A.S.C. performed in vivo glass pipette extracellular recordings and in vitro electrophysiology. M.L.M. and J.A.C. performed in vivo tetrode extracellular recordings. V.B. performed in vivo multielectrode array recordings. A.S.C., G.A.C.M., A.T.S. and A.Y. performed slice electrophysiology. A.S.C., M.L.M., G.A.C.M., A.T.S., J.A.C., V.B. and M.O. performed in vivo viral injections. A.S.C., M.L.M., V.B., G.A.C.M., A.T.S., S.B.R. and M.O. performed histological processing and fluorescence imaging. S.B.K. and C.R.F. designed or performed autopatch experiments. A.S.C. and N.C.K. performed transfections, cell culture and in vitro viral infections. M.A.H. conducted Monte Carlo modeling. L.C.A. carried out light propagation measurements. R.C.B. and B.D.A. carried out X-ray scans to measure mouse skull thicknesses for the Monte Carlo model. A.S.C., M.L.M., V.B., G.A.C.M., A.T.S., B.Y.C., X.H., J.A.C., B.R. and E.S.B. contributed to study design and data interpretation. J.A.C., B.R., K.M.T., Y.L. and E.S.B. supervised all aspects of the work. A.S.C. and E.S.B. wrote the paper with contributions from the other authors. COMPETING FINANCIAL INTERESTS The authors declare competing financial interests: details are available in the online version of the paper. Reprints and permissions information is available online at http://www.nature.com/reprints/index.html A Supplementary Methods Checklist is available. NIH Public Access Author Manuscript Nat Neurosci. Author manuscript; available in PMC 2014 October 03. Published in final edited form as: Nat Neurosci. 2014 August ; 17(8): 1123–1129. doi:10.1038/nn.3752. N IH -P A A uhor M anscript N IH -P A A uhor M anscript N IH -P A A uhor M anscript Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light–induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensoryevoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience. Optogenetic inhibition, the use of light-activated ion pumps to enable transient activity suppression of genetically targeted neurons by pulses of light1–3, is valuable for the causal parsing of neural circuit component contributions to brain functions and behaviors. A major limit to the utility of optogenetic inhibition is the addressable quantity of neural tissue. Previous optogenetic hyperpolarizing proton pumps (Arch1, ArchT3, Mac1) and chloride pumps (eNpHR4, eNpHR3.0 (ref. 2)) have successfully inhibited volumes of approximately a cubic millimeter, but many neuroscience questions require the ability to suppress larger tissue volumes. A number of pharmacogenetic, chemical and genetic strategies have been used for this purpose5–7, but it would ideally be possible to address these large brain volumes with the millisecond temporal precision of optogenetic tools. Another common desire in optogenetic experiments is to minimize invasiveness from inserting optical fibers into the brain, which displaces brain tissue and can lead to side effects such as brain lesion, neural morphology changes, glial inflammation and motility, or compromise of asepsis8–10. Less invasive strategies that do not require an implanted optical device would also increase experimental convenience and enable longer timescale experiments than often feasible with fragile implants. While a number of previous studies using channelrhodopsins have attempted to address this problem11–16, noninvasive optical inhibition has not yet been possible. To enable noninvasive large-volume optogenetic inhibition, we engineered and characterized Jaws, a spectrally shifted cruxhalorhodopsin derived from the species H. salinarum (strain Shark)17, which mediates strong red light–driven neural inhibition. Jaws is capable of powerful optical hyperpolarization in a variety of neuroscientific contexts: it successfully enabled suppression of visually evoked neural activity in mice, functioned in cone photoreceptors to restore greater light sensitivity in mouse models than possible with previous opsins and enabled the noninvasive transcranial inhibition of neurons in brain structures up to 3 mm deep. This new reagent thus makes a variety of important experiments amenable to optogenetic investigation. Chuong et al. Page 2 Nat Neurosci. Author manuscript; available in PMC 2014 October 03. N IH -P A A uhor M anscript N IH -P A A uhor M anscript N IH -P A A uhor M anscript" @default.
- W1570757432 created "2016-06-24" @default.
- W1570757432 creator A5001136426 @default.
- W1570757432 creator A5001682167 @default.
- W1570757432 creator A5009744002 @default.
- W1570757432 creator A5011469525 @default.
- W1570757432 creator A5013099735 @default.
- W1570757432 creator A5013171176 @default.
- W1570757432 creator A5014028135 @default.
- W1570757432 creator A5020457547 @default.
- W1570757432 creator A5023647833 @default.
- W1570757432 creator A5029086323 @default.
- W1570757432 creator A5036370739 @default.
- W1570757432 creator A5036631991 @default.
- W1570757432 creator A5039075642 @default.
- W1570757432 creator A5052101010 @default.
- W1570757432 creator A5057862535 @default.
- W1570757432 creator A5058194958 @default.
- W1570757432 creator A5064588009 @default.
- W1570757432 creator A5083695993 @default.
- W1570757432 creator A5085386025 @default.
- W1570757432 creator A5085580232 @default.
- W1570757432 creator A5086953418 @default.
- W1570757432 creator A5087829850 @default.
- W1570757432 date "2014-07-06" @default.
- W1570757432 modified "2023-10-17" @default.
- W1570757432 title "Noninvasive optical inhibition with a red-shifted microbial rhodopsin" @default.
- W1570757432 cites W1516690887 @default.
- W1570757432 cites W1522048223 @default.
- W1570757432 cites W1963898173 @default.
- W1570757432 cites W1963937305 @default.
- W1570757432 cites W1966403223 @default.
- W1570757432 cites W1966925573 @default.
- W1570757432 cites W1968169427 @default.
- W1570757432 cites W1969650326 @default.
- W1570757432 cites W1972154148 @default.
- W1570757432 cites W1973614121 @default.
- W1570757432 cites W1973846615 @default.
- W1570757432 cites W1984390450 @default.
- W1570757432 cites W1984733388 @default.
- W1570757432 cites W1987586663 @default.
- W1570757432 cites W1994439005 @default.
- W1570757432 cites W1995454338 @default.
- W1570757432 cites W1997654862 @default.
- W1570757432 cites W1997791581 @default.
- W1570757432 cites W2000408299 @default.
- W1570757432 cites W2004417373 @default.
- W1570757432 cites W2011083779 @default.
- W1570757432 cites W2012271461 @default.
- W1570757432 cites W2013492930 @default.
- W1570757432 cites W2013870510 @default.
- W1570757432 cites W2013927030 @default.
- W1570757432 cites W2019085618 @default.
- W1570757432 cites W2021308189 @default.
- W1570757432 cites W2022161423 @default.
- W1570757432 cites W2033707631 @default.
- W1570757432 cites W2035566852 @default.
- W1570757432 cites W2036420764 @default.
- W1570757432 cites W2038294038 @default.
- W1570757432 cites W2038439610 @default.
- W1570757432 cites W2043358402 @default.
- W1570757432 cites W2047378045 @default.
- W1570757432 cites W2050054249 @default.
- W1570757432 cites W2050932531 @default.
- W1570757432 cites W2051781198 @default.
- W1570757432 cites W2054170178 @default.
- W1570757432 cites W2058082904 @default.
- W1570757432 cites W2058445457 @default.
- W1570757432 cites W2060978874 @default.
- W1570757432 cites W2068584514 @default.
- W1570757432 cites W2069041575 @default.
- W1570757432 cites W2070307676 @default.
- W1570757432 cites W2076550589 @default.
- W1570757432 cites W2077257392 @default.
- W1570757432 cites W2080335044 @default.
- W1570757432 cites W2080351494 @default.
- W1570757432 cites W2085523626 @default.
- W1570757432 cites W2088337203 @default.
- W1570757432 cites W2094660330 @default.
- W1570757432 cites W2103401383 @default.
- W1570757432 cites W2103775384 @default.
- W1570757432 cites W2104976664 @default.
- W1570757432 cites W2107635023 @default.
- W1570757432 cites W2108846059 @default.
- W1570757432 cites W2127780691 @default.
- W1570757432 cites W2134996138 @default.
- W1570757432 cites W2139272195 @default.
- W1570757432 cites W2149561999 @default.
- W1570757432 cites W2162407586 @default.
- W1570757432 cites W2167095271 @default.
- W1570757432 cites W2168691448 @default.
- W1570757432 cites W2171509705 @default.
- W1570757432 hasPublicationYear "2014" @default.
- W1570757432 type Work @default.
- W1570757432 sameAs 1570757432 @default.
- W1570757432 citedByCount "1" @default.
- W1570757432 countsByYear W15707574322021 @default.
- W1570757432 crossrefType "dissertation" @default.
- W1570757432 hasAuthorship W1570757432A5001136426 @default.
- W1570757432 hasAuthorship W1570757432A5001682167 @default.