Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570946947> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W1570946947 abstract "The nature inspired approaches represent a new trend in computer science in general and in the Semantic Web, due to their scalability and robustness. Neural networks represent one category of nature inspired solutions. The self-organizing map (SOM) is a very popular unsupervised neural network model (Kohonen, et al., 2000). It is a data mining and visualization method for complex high dimensional data sets. In the first part of the chapter, we present how the SOM model can be applied in Web mining, by giving sets of documents as input data space for SOM. The result of applying SOM on a set of documents is a map of documents, which is organized in a meaningful manner so that documents with similar content appear at nearby locations on the twodimensional map display. From the information retrieval point of view, our implemented SOM-based system creates document maps that are readily organized for browsing. A document map also clusters the data, resulting in an approximate model of the data distribution in the high dimensional document space. Some experimental results are included, where a couple of meaningful clusters have been discovered by our system in a subset of the “20 newsgroups” data set (Lang, K., 1995). The clustering capability of our system allows users to find out quickly what is new in a Web site of interest by comparing the clusters obtained from the site at different moments in time. In the rest of the chapter, we focus on how a more complex SOM based unsupervised neural network model is used for enriching a domain ontology. Building complete and reliable domain ontologies is the basis for the success of the Semantic Web. The ontology enrichment process consists in the addition of new concepts which will be attached as hyponyms for the existent nodes of the ontology (Pekar and Staab, 2002). The names of the new concepts are terms represented linguistically by common noun phrases. The enrichment process can also add new instances to existent concepts of the ontology. In this case, the process is also known in the literature as ontology population or named entity classification, where the named entities are represented linguistically by proper names of people, organizations, locations etc. (Cimiano and Volker, 2005). In both cases, the process is algorithmically the same, the only difference being the grammatical category of the linguistic entities to be classified: common noun phrases representing terms for new concepts to be added or proper noun phrases representing named entities, i.e. new instances for the existent 22" @default.
- W1570946947 created "2016-06-24" @default.
- W1570946947 creator A5012790109 @default.
- W1570946947 creator A5069914349 @default.
- W1570946947 date "2010-04-01" @default.
- W1570946947 modified "2023-10-18" @default.
- W1570946947 title "Self-organizing Maps in Web Mining and Semantic Web" @default.
- W1570946947 cites W112079613 @default.
- W1570946947 cites W14338165 @default.
- W1570946947 cites W1493526108 @default.
- W1570946947 cites W1500447620 @default.
- W1570946947 cites W151146750 @default.
- W1570946947 cites W1540711569 @default.
- W1570946947 cites W1545214528 @default.
- W1570946947 cites W161213151 @default.
- W1570946947 cites W166587332 @default.
- W1570946947 cites W169783997 @default.
- W1570946947 cites W1868671693 @default.
- W1570946947 cites W193243635 @default.
- W1570946947 cites W1983578042 @default.
- W1570946947 cites W1984118948 @default.
- W1570946947 cites W1992550299 @default.
- W1570946947 cites W2007038646 @default.
- W1570946947 cites W2033709196 @default.
- W1570946947 cites W2038721957 @default.
- W1570946947 cites W2063113634 @default.
- W1570946947 cites W2068737686 @default.
- W1570946947 cites W2100648544 @default.
- W1570946947 cites W2113638860 @default.
- W1570946947 cites W2115298015 @default.
- W1570946947 cites W2123237319 @default.
- W1570946947 cites W2127421174 @default.
- W1570946947 cites W2132744746 @default.
- W1570946947 cites W2136134253 @default.
- W1570946947 cites W2137540340 @default.
- W1570946947 cites W2140259275 @default.
- W1570946947 cites W2151686996 @default.
- W1570946947 cites W2158997610 @default.
- W1570946947 cites W2162161511 @default.
- W1570946947 cites W2167556983 @default.
- W1570946947 cites W2215877799 @default.
- W1570946947 cites W2238904277 @default.
- W1570946947 cites W2480823300 @default.
- W1570946947 cites W34629604 @default.
- W1570946947 cites W4508078 @default.
- W1570946947 cites W122548919 @default.
- W1570946947 cites W2140334550 @default.
- W1570946947 cites W2339534148 @default.
- W1570946947 cites W2552124713 @default.
- W1570946947 cites W2582976149 @default.
- W1570946947 doi "https://doi.org/10.5772/9172" @default.
- W1570946947 hasPublicationYear "2010" @default.
- W1570946947 type Work @default.
- W1570946947 sameAs 1570946947 @default.
- W1570946947 citedByCount "3" @default.
- W1570946947 countsByYear W15709469472012 @default.
- W1570946947 countsByYear W15709469472013 @default.
- W1570946947 crossrefType "book-chapter" @default.
- W1570946947 hasAuthorship W1570946947A5012790109 @default.
- W1570946947 hasAuthorship W1570946947A5069914349 @default.
- W1570946947 hasBestOaLocation W15709469471 @default.
- W1570946947 hasConcept C136764020 @default.
- W1570946947 hasConcept C148792806 @default.
- W1570946947 hasConcept C162005631 @default.
- W1570946947 hasConcept C167379230 @default.
- W1570946947 hasConcept C197046077 @default.
- W1570946947 hasConcept C2129575 @default.
- W1570946947 hasConcept C23123220 @default.
- W1570946947 hasConcept C35578498 @default.
- W1570946947 hasConcept C41008148 @default.
- W1570946947 hasConcept C534406577 @default.
- W1570946947 hasConceptScore W1570946947C136764020 @default.
- W1570946947 hasConceptScore W1570946947C148792806 @default.
- W1570946947 hasConceptScore W1570946947C162005631 @default.
- W1570946947 hasConceptScore W1570946947C167379230 @default.
- W1570946947 hasConceptScore W1570946947C197046077 @default.
- W1570946947 hasConceptScore W1570946947C2129575 @default.
- W1570946947 hasConceptScore W1570946947C23123220 @default.
- W1570946947 hasConceptScore W1570946947C35578498 @default.
- W1570946947 hasConceptScore W1570946947C41008148 @default.
- W1570946947 hasConceptScore W1570946947C534406577 @default.
- W1570946947 hasLocation W15709469471 @default.
- W1570946947 hasLocation W15709469472 @default.
- W1570946947 hasOpenAccess W1570946947 @default.
- W1570946947 hasPrimaryLocation W15709469471 @default.
- W1570946947 hasRelatedWork W1414580748 @default.
- W1570946947 hasRelatedWork W1561729373 @default.
- W1570946947 hasRelatedWork W2185514053 @default.
- W1570946947 hasRelatedWork W2323581027 @default.
- W1570946947 hasRelatedWork W2351790455 @default.
- W1570946947 hasRelatedWork W2352490706 @default.
- W1570946947 hasRelatedWork W2612132837 @default.
- W1570946947 hasRelatedWork W2186496741 @default.
- W1570946947 hasRelatedWork W2399320121 @default.
- W1570946947 hasRelatedWork W2800975405 @default.
- W1570946947 isParatext "false" @default.
- W1570946947 isRetracted "false" @default.
- W1570946947 magId "1570946947" @default.
- W1570946947 workType "book-chapter" @default.