Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570989169> ?p ?o ?g. }
- W1570989169 endingPage "664" @default.
- W1570989169 startingPage "649" @default.
- W1570989169 abstract "Decision trees are commonly used in supervised classification. Currently, supervised classification problems with large training sets are very common, however many supervised classifiers cannot handle this amount of data. There are some decision tree induction algorithms that are capable to process large training sets, however almost all of them have memory restrictions because they need to keep in main memory the whole training set, or a big amount of it. Moreover, algorithms that do not have memory restrictions have to choose a subset of the training set, needing extra time for this selection; or they require to specify the values for some parameters that could be very difficult to determine by the user. In this paper, we present a new fast heuristic for building decision trees from large training sets, which overcomes some of the restrictions of the state of the art algorithms, using all the instances of the training set without storing all of them in main memory. Experimental results show that our algorithm is faster than the most recent algorithms for building decision trees from large training sets." @default.
- W1570989169 created "2016-06-24" @default.
- W1570989169 creator A5009754927 @default.
- W1570989169 creator A5022183538 @default.
- W1570989169 creator A5035707873 @default.
- W1570989169 creator A5044893740 @default.
- W1570989169 date "2012-07-11" @default.
- W1570989169 modified "2023-10-11" @default.
- W1570989169 title "Building fast decision trees from large training sets" @default.
- W1570989169 cites W1483135265 @default.
- W1570989169 cites W1490135531 @default.
- W1570989169 cites W1504694836 @default.
- W1570989169 cites W1514109655 @default.
- W1570989169 cites W1529107069 @default.
- W1570989169 cites W1542798451 @default.
- W1570989169 cites W1567102514 @default.
- W1570989169 cites W1576962511 @default.
- W1570989169 cites W1591361919 @default.
- W1570989169 cites W1594031697 @default.
- W1570989169 cites W1637435380 @default.
- W1570989169 cites W1881647329 @default.
- W1570989169 cites W1972953764 @default.
- W1570989169 cites W2010657328 @default.
- W1570989169 cites W2017986871 @default.
- W1570989169 cites W2031786698 @default.
- W1570989169 cites W2033139852 @default.
- W1570989169 cites W2043062256 @default.
- W1570989169 cites W2068714596 @default.
- W1570989169 cites W2069816994 @default.
- W1570989169 cites W2074691637 @default.
- W1570989169 cites W2095897464 @default.
- W1570989169 cites W2100406636 @default.
- W1570989169 cites W2103012681 @default.
- W1570989169 cites W2103478177 @default.
- W1570989169 cites W2112841646 @default.
- W1570989169 cites W2113546432 @default.
- W1570989169 cites W2119475352 @default.
- W1570989169 cites W2125055259 @default.
- W1570989169 cites W2133632100 @default.
- W1570989169 cites W2148239836 @default.
- W1570989169 cites W2152837238 @default.
- W1570989169 cites W2168508819 @default.
- W1570989169 cites W3085162807 @default.
- W1570989169 cites W57790744 @default.
- W1570989169 cites W589058777 @default.
- W1570989169 cites W94571269 @default.
- W1570989169 doi "https://doi.org/10.3233/ida-2012-0542" @default.
- W1570989169 hasPublicationYear "2012" @default.
- W1570989169 type Work @default.
- W1570989169 sameAs 1570989169 @default.
- W1570989169 citedByCount "15" @default.
- W1570989169 countsByYear W15709891692013 @default.
- W1570989169 countsByYear W15709891692015 @default.
- W1570989169 countsByYear W15709891692016 @default.
- W1570989169 countsByYear W15709891692018 @default.
- W1570989169 countsByYear W15709891692021 @default.
- W1570989169 countsByYear W15709891692022 @default.
- W1570989169 crossrefType "journal-article" @default.
- W1570989169 hasAuthorship W1570989169A5009754927 @default.
- W1570989169 hasAuthorship W1570989169A5022183538 @default.
- W1570989169 hasAuthorship W1570989169A5035707873 @default.
- W1570989169 hasAuthorship W1570989169A5044893740 @default.
- W1570989169 hasConcept C10229987 @default.
- W1570989169 hasConcept C111919701 @default.
- W1570989169 hasConcept C119857082 @default.
- W1570989169 hasConcept C121332964 @default.
- W1570989169 hasConcept C124101348 @default.
- W1570989169 hasConcept C153294291 @default.
- W1570989169 hasConcept C154945302 @default.
- W1570989169 hasConcept C173801870 @default.
- W1570989169 hasConcept C177264268 @default.
- W1570989169 hasConcept C199360897 @default.
- W1570989169 hasConcept C2777211547 @default.
- W1570989169 hasConcept C41008148 @default.
- W1570989169 hasConcept C51632099 @default.
- W1570989169 hasConcept C5481197 @default.
- W1570989169 hasConcept C81917197 @default.
- W1570989169 hasConcept C84525736 @default.
- W1570989169 hasConcept C98045186 @default.
- W1570989169 hasConceptScore W1570989169C10229987 @default.
- W1570989169 hasConceptScore W1570989169C111919701 @default.
- W1570989169 hasConceptScore W1570989169C119857082 @default.
- W1570989169 hasConceptScore W1570989169C121332964 @default.
- W1570989169 hasConceptScore W1570989169C124101348 @default.
- W1570989169 hasConceptScore W1570989169C153294291 @default.
- W1570989169 hasConceptScore W1570989169C154945302 @default.
- W1570989169 hasConceptScore W1570989169C173801870 @default.
- W1570989169 hasConceptScore W1570989169C177264268 @default.
- W1570989169 hasConceptScore W1570989169C199360897 @default.
- W1570989169 hasConceptScore W1570989169C2777211547 @default.
- W1570989169 hasConceptScore W1570989169C41008148 @default.
- W1570989169 hasConceptScore W1570989169C51632099 @default.
- W1570989169 hasConceptScore W1570989169C5481197 @default.
- W1570989169 hasConceptScore W1570989169C81917197 @default.
- W1570989169 hasConceptScore W1570989169C84525736 @default.
- W1570989169 hasConceptScore W1570989169C98045186 @default.
- W1570989169 hasIssue "4" @default.
- W1570989169 hasLocation W15709891691 @default.