Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570993968> ?p ?o ?g. }
- W1570993968 abstract "In light of the current global mass extinction of species, ecologists are facing great challenges. In order to reverse the path towards additional extinctions early warning systems to guide management actions need to be developed. However, considering the countless species to monitor and the complexity of interactions affecting species abundances in ecological communities, this is not an easy task. Before this goal can be reached our understanding of how community structure and species interactions interact and affect the risk of extinction of single species needs to be increased. Thus the primary aim of the present thesis is to study this interaction and contribute to a theoretical basis for the identification of extinction prone species. In paper II it is concluded that spectral analysis of population time series may function as a tool to predict extinctions at an early stage. More specifically, I show that extinction risk of producer species in food webs under influence of uncorrelated environmental stochasticity increases with intensified red-shift of population time series. However, this relationship is strictly context-dependent, which means that a producer with red dynamics might survive in one type of food web, but the same producer species with a similar magnitude of spectral redness can go extinct in another food web where the interactions with other species are arranged in a different manner. Then I turn to look at which species might be more prone to become endangered or to go extinct in food webs experiencing various types of uncorrelated environmental stochasticity. In paper I I show that producer species are more likely to reach endangered population levels (according to The World Conservation Union, IUCN, criterion), whereas paper III demonstrates that consumer species more frequently go extinct. This seemingly contradiction may be explained by characteristics inherent to many producer species (e.g. high growth rate, short generation time) that enable them to recover from low population levels and thus escape extinction. Furthermore, in both the second and the third paper I show that the structure of food webs as well as the presence, position and direction of a strong interaction between two species in a food web play significant roles in the likelihood of a species reaching endangered population levels or going extinct. In paper IV I show that small and condensed food webs are likely to express fundamentally different dynamics compared to large and well-resolved versions of the same natural food webs. Starting from a well-resolved version of a real food web, local dynamics of the ecological system change in a non-linear manner, during gradual lumping of the functionally most similar species into aggregated species (or trophospecies), Here it is also suggested that functional redundancy exists in natural food webs. This may imply support for the ?insurance hypothesis? since sequential extinction of one of the species in the functionally most similar pair of species initially did not generate any significant changes in local dynamics of the system. To sum up, in this thesis I present a prototype of a predictive tool to discover species at risk of going extinct. I also present directions to which type of species to look for and what type of structures and interactions to pay attention to when searching for presumptive victims of extinction in ecological systems. However, the features of the ecological models I have used for my research are in many cases incomplete. For example, my food webs contain relatively few species without competitive interactions subjected to only uncorrelated environmental variability. Further research will have to test the generality of the results and the robustness of the conclusions drawn from them. (Less)" @default.
- W1570993968 created "2016-06-24" @default.
- W1570993968 creator A5033545245 @default.
- W1570993968 date "2007-01-01" @default.
- W1570993968 modified "2023-09-25" @default.
- W1570993968 title "Food Webs, Models and Species Extinctions in a Stochastic Environment" @default.
- W1570993968 cites W129831482 @default.
- W1570993968 cites W1493919779 @default.
- W1570993968 cites W1498054492 @default.
- W1570993968 cites W1505542987 @default.
- W1570993968 cites W1542532100 @default.
- W1570993968 cites W1547453377 @default.
- W1570993968 cites W1548688122 @default.
- W1570993968 cites W1558456135 @default.
- W1570993968 cites W1590824230 @default.
- W1570993968 cites W1597871704 @default.
- W1570993968 cites W1654237396 @default.
- W1570993968 cites W1673911344 @default.
- W1570993968 cites W1734689372 @default.
- W1570993968 cites W1856246780 @default.
- W1570993968 cites W1946886856 @default.
- W1570993968 cites W1964561454 @default.
- W1570993968 cites W1964915882 @default.
- W1570993968 cites W1965173220 @default.
- W1570993968 cites W1967563891 @default.
- W1570993968 cites W1968302182 @default.
- W1570993968 cites W1968786866 @default.
- W1570993968 cites W1969027200 @default.
- W1570993968 cites W1970429014 @default.
- W1570993968 cites W1971523015 @default.
- W1570993968 cites W1971872476 @default.
- W1570993968 cites W1972106549 @default.
- W1570993968 cites W1972753341 @default.
- W1570993968 cites W1975998971 @default.
- W1570993968 cites W1976951015 @default.
- W1570993968 cites W1977765506 @default.
- W1570993968 cites W1977944776 @default.
- W1570993968 cites W1979005561 @default.
- W1570993968 cites W1980177068 @default.
- W1570993968 cites W1983530401 @default.
- W1570993968 cites W1984555757 @default.
- W1570993968 cites W1984891176 @default.
- W1570993968 cites W1988201445 @default.
- W1570993968 cites W1988504791 @default.
- W1570993968 cites W1989889175 @default.
- W1570993968 cites W1997297480 @default.
- W1570993968 cites W1999034136 @default.
- W1570993968 cites W1999855446 @default.
- W1570993968 cites W2000312122 @default.
- W1570993968 cites W2000902397 @default.
- W1570993968 cites W2001451047 @default.
- W1570993968 cites W2002315210 @default.
- W1570993968 cites W2002442011 @default.
- W1570993968 cites W2002615685 @default.
- W1570993968 cites W2003536263 @default.
- W1570993968 cites W2003764990 @default.
- W1570993968 cites W2004270844 @default.
- W1570993968 cites W2004728046 @default.
- W1570993968 cites W2004827430 @default.
- W1570993968 cites W2005861590 @default.
- W1570993968 cites W2007247012 @default.
- W1570993968 cites W2007587573 @default.
- W1570993968 cites W2007588431 @default.
- W1570993968 cites W2008620264 @default.
- W1570993968 cites W2011338611 @default.
- W1570993968 cites W2013945534 @default.
- W1570993968 cites W2015823673 @default.
- W1570993968 cites W2017841226 @default.
- W1570993968 cites W2020100924 @default.
- W1570993968 cites W2020447892 @default.
- W1570993968 cites W2022228987 @default.
- W1570993968 cites W2023765702 @default.
- W1570993968 cites W2024882325 @default.
- W1570993968 cites W2026816697 @default.
- W1570993968 cites W2027990961 @default.
- W1570993968 cites W2028053705 @default.
- W1570993968 cites W2028568622 @default.
- W1570993968 cites W2028668753 @default.
- W1570993968 cites W2030757694 @default.
- W1570993968 cites W2033316778 @default.
- W1570993968 cites W2034144475 @default.
- W1570993968 cites W2035841992 @default.
- W1570993968 cites W2037811913 @default.
- W1570993968 cites W2039595174 @default.
- W1570993968 cites W2040045403 @default.
- W1570993968 cites W2043078874 @default.
- W1570993968 cites W2043127549 @default.
- W1570993968 cites W2044488814 @default.
- W1570993968 cites W2047827879 @default.
- W1570993968 cites W2051624184 @default.
- W1570993968 cites W2053653709 @default.
- W1570993968 cites W2054126322 @default.
- W1570993968 cites W2054637019 @default.
- W1570993968 cites W2054872285 @default.
- W1570993968 cites W2055630785 @default.
- W1570993968 cites W2056842054 @default.
- W1570993968 cites W2057221944 @default.
- W1570993968 cites W2058515333 @default.
- W1570993968 cites W2058757045 @default.
- W1570993968 cites W2059007137 @default.