Matches in SemOpenAlex for { <https://semopenalex.org/work/W1571105655> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1571105655 abstract "We present a gallery of simple curvature continuous surfaces that possess the topological structure of the Platonic solids_ These spherelike surfaces consist of ODe cubic triangular or biquadratic quadrilateral patch per vertex of the solid and interpolate the vertices of the dual solid. §l. Polynomial curvature continuous surfaces Constructing low degree polynomial curvature continuous surfaces is a difficult problem. Existing parametric solutions [3, 6, 5] require both a large number of patches and high degree. A recent implicit curvature continuous construction requires only algebraic degree 4, but consists of many pieces [4]. On the other hand the existence of low degree (rational) curvature continues representations of shapes such as the sphere hints at the existence of elegant solutions for restricted geometric shapes. This paper describes a small family of polynomial surfaces that approximate the sphere and have the symmetry structure of Platonic polyhedra. These spheroids embody a remarkably simple construction principle: pick a Platonic polyhedron and its dual; associate with each 3-valent vertex of the dual a triangular patch of degree 3, or with each 4-valent vertex a quadrilateral patch of degree bi-2. The Bernstein-Bezier control points of the spheroid patches are the face centroids, edge midpoints and scaled vertices of the dual. By symmetry, the spheroid interpolates the vertices of the Platonic and by scaling those of the dual Platonic. Using their simple, explicit parametrization the two higWy symmetric platonic spheroids can be proven strictly convex. The table below collects basic spheroid properties. Table 1 patches interpolates max Gauss name curvature Tetroid 4 Tetrahedron 3.24 Hexoid 6 Cube 1.92 Octoid 8 Octahedron 1.69 Dodecoid 20 Icosahedron 1.25 2 J. Peters, L. Kobbelt Construction Principle Gauss curvature curvature lines, needle plot vertices ofprogenitor solid are unit size Fig. 2. Synopsis of patch transitions and curvature used in Sections 3·6. §2. Guide to the gallery Each of the following four sections gives the synopsis of one platonic spheroid. Pick a Platonic solid. Its dual will be interpolated and gives the particular spheroid its name. The part closer to a vertex V of the original Platonic solid is covered by a single patch (there is no dodecoid since that would require a 5-sided patch). The complete surface is obtained by applying the operations of the solid's symmetry group (see e.g. [2]) to this one patch. The patch associated with V has quadratic boundary curves and one interior control point. Each boundary curve connects the centroids of two edge-adjacent facets attached to V and uses the midpoint of their common edge as middle coefficient of the quadratic curve in Bezier form. If V is three-valent} the Bezier representation of the boundaries arc degree-raised. The center control point of the biquadratic or cubic patch is always a multiple of V. Besides the representative patch, each synopsis shows} in the upper left sketch, the facet centroids, edge midpoints and the two vertices that determine the tangent plane common to two patches} say p and q. Tangent continuity of the surface follows from the existence of a linear scalar polynomial) such that the versal derivative DIP along the common edge of p and q is a linear combination of the transversal derivatives D2P and D 2q across the common edge, here parametrized by u. In symbols p(u, 0) = q(u, 0) and A(u)D,P(u, 0) = D2P(u, 0) + D2q(u, 0). In the synopsis} the coefficients of DiP are collected in a matrix. The upper right figure shows the spheroid textured by Gauss curvature, curvature lines and a needle plot proportional to the curvature. The normalization is chosen so that the vertices of the name-giving Platonic solid are on the unit sphere. Scale and maximal curvature are displayed on the right. Since the surfaces are symmetric across the edges and vertices} first order smoothness implies that the transitions are also curvature continuous. Finally, the positivity of all Bezier coefficients in numerator and denominator of the expression for Gauss curvature establishes convexity of octoid and icosoid." @default.
- W1571105655 created "2016-06-24" @default.
- W1571105655 creator A5014228411 @default.
- W1571105655 creator A5083076675 @default.
- W1571105655 date "1997-01-01" @default.
- W1571105655 modified "2023-09-24" @default.
- W1571105655 title "The Platonic Spheroids" @default.
- W1571105655 cites W2058349231 @default.
- W1571105655 hasPublicationYear "1997" @default.
- W1571105655 type Work @default.
- W1571105655 sameAs 1571105655 @default.
- W1571105655 citedByCount "2" @default.
- W1571105655 countsByYear W15711056552015 @default.
- W1571105655 crossrefType "journal-article" @default.
- W1571105655 hasAuthorship W1571105655A5014228411 @default.
- W1571105655 hasAuthorship W1571105655A5083076675 @default.
- W1571105655 hasConcept C114614502 @default.
- W1571105655 hasConcept C121332964 @default.
- W1571105655 hasConcept C132525143 @default.
- W1571105655 hasConcept C134306372 @default.
- W1571105655 hasConcept C195065555 @default.
- W1571105655 hasConcept C24890656 @default.
- W1571105655 hasConcept C2524010 @default.
- W1571105655 hasConcept C2775997480 @default.
- W1571105655 hasConcept C33923547 @default.
- W1571105655 hasConcept C54829058 @default.
- W1571105655 hasConcept C80899671 @default.
- W1571105655 hasConcept C90119067 @default.
- W1571105655 hasConceptScore W1571105655C114614502 @default.
- W1571105655 hasConceptScore W1571105655C121332964 @default.
- W1571105655 hasConceptScore W1571105655C132525143 @default.
- W1571105655 hasConceptScore W1571105655C134306372 @default.
- W1571105655 hasConceptScore W1571105655C195065555 @default.
- W1571105655 hasConceptScore W1571105655C24890656 @default.
- W1571105655 hasConceptScore W1571105655C2524010 @default.
- W1571105655 hasConceptScore W1571105655C2775997480 @default.
- W1571105655 hasConceptScore W1571105655C33923547 @default.
- W1571105655 hasConceptScore W1571105655C54829058 @default.
- W1571105655 hasConceptScore W1571105655C80899671 @default.
- W1571105655 hasConceptScore W1571105655C90119067 @default.
- W1571105655 hasLocation W15711056551 @default.
- W1571105655 hasOpenAccess W1571105655 @default.
- W1571105655 hasPrimaryLocation W15711056551 @default.
- W1571105655 hasRelatedWork W1481230041 @default.
- W1571105655 hasRelatedWork W1922534501 @default.
- W1571105655 hasRelatedWork W1975495885 @default.
- W1571105655 hasRelatedWork W2182952090 @default.
- W1571105655 hasRelatedWork W2184205145 @default.
- W1571105655 hasRelatedWork W2184311553 @default.
- W1571105655 hasRelatedWork W2195243935 @default.
- W1571105655 hasRelatedWork W2214287323 @default.
- W1571105655 hasRelatedWork W2531242336 @default.
- W1571105655 hasRelatedWork W2951935140 @default.
- W1571105655 hasRelatedWork W2962918054 @default.
- W1571105655 hasRelatedWork W2962983495 @default.
- W1571105655 hasRelatedWork W2970383940 @default.
- W1571105655 hasRelatedWork W2974769091 @default.
- W1571105655 hasRelatedWork W3043032261 @default.
- W1571105655 hasRelatedWork W3100085997 @default.
- W1571105655 hasRelatedWork W3104615049 @default.
- W1571105655 hasRelatedWork W3179600772 @default.
- W1571105655 hasRelatedWork W3196456691 @default.
- W1571105655 hasRelatedWork W9548168 @default.
- W1571105655 isParatext "false" @default.
- W1571105655 isRetracted "false" @default.
- W1571105655 magId "1571105655" @default.
- W1571105655 workType "article" @default.