Matches in SemOpenAlex for { <https://semopenalex.org/work/W1571765640> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1571765640 abstract "The aim of this paper is to develop and apply Neural Network (NN) models in order to forecast regional employment patterns in Germany. NNs are statistical tools based on learning algorithms with a distribution over a large amount of quantitative data. NNs are increasingly deployed in the social sciences as a useful technique for interpolating data when a clear specification of the functional relationship between dependent and independent variables is not available. In addition to traditional NN models, a further set of NN models will be developed in this paper, incorporating Genetic Algorithm (GA) techniques in order to detect the networks’ structure. GAs are computer-aided optimization tools that imitate natural biological evolution in order to find the solution that best fits the given case. Our experiments employ a data set consisting of a panel of 439 districts distributed over the former West and East Germany,. The West and East data sets have different time horizons, as employment information by district is available from 1987 and 1993 for West and East Germany, respectively. Separate West and East models are tested, before carrying out a unified experiment on the full data set for Germany. The above models are then evaluated by means of several statistical indicators, in order to test their ability to provide out- of-sample forecasts. A comparison between traditional and GAenhanced models is ultimately proposed. The results show that the West and East NN models perform with different degrees of precision, because of the different data sets’ time horizons." @default.
- W1571765640 created "2016-06-24" @default.
- W1571765640 creator A5009404760 @default.
- W1571765640 creator A5011724598 @default.
- W1571765640 creator A5059101335 @default.
- W1571765640 creator A5084548810 @default.
- W1571765640 date "2005-11-08" @default.
- W1571765640 modified "2023-09-27" @default.
- W1571765640 title "Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms" @default.
- W1571765640 cites W1497256448 @default.
- W1571765640 cites W1771353485 @default.
- W1571765640 cites W192975702 @default.
- W1571765640 cites W1970140636 @default.
- W1571765640 cites W2037378589 @default.
- W1571765640 cites W2040989045 @default.
- W1571765640 cites W2049668183 @default.
- W1571765640 cites W2076750860 @default.
- W1571765640 cites W2079775355 @default.
- W1571765640 cites W2089387865 @default.
- W1571765640 cites W2114235177 @default.
- W1571765640 cites W2153408914 @default.
- W1571765640 cites W2177791359 @default.
- W1571765640 cites W2243862681 @default.
- W1571765640 cites W2270864342 @default.
- W1571765640 cites W3124941243 @default.
- W1571765640 cites W3140951195 @default.
- W1571765640 cites W3145700613 @default.
- W1571765640 cites W3207342693 @default.
- W1571765640 cites W569338463 @default.
- W1571765640 hasPublicationYear "2005" @default.
- W1571765640 type Work @default.
- W1571765640 sameAs 1571765640 @default.
- W1571765640 citedByCount "3" @default.
- W1571765640 countsByYear W15717656402014 @default.
- W1571765640 crossrefType "posted-content" @default.
- W1571765640 hasAuthorship W1571765640A5009404760 @default.
- W1571765640 hasAuthorship W1571765640A5011724598 @default.
- W1571765640 hasAuthorship W1571765640A5059101335 @default.
- W1571765640 hasAuthorship W1571765640A5084548810 @default.
- W1571765640 hasConcept C10138342 @default.
- W1571765640 hasConcept C11413529 @default.
- W1571765640 hasConcept C119857082 @default.
- W1571765640 hasConcept C124101348 @default.
- W1571765640 hasConcept C154945302 @default.
- W1571765640 hasConcept C162324750 @default.
- W1571765640 hasConcept C177264268 @default.
- W1571765640 hasConcept C182306322 @default.
- W1571765640 hasConcept C185592680 @default.
- W1571765640 hasConcept C198531522 @default.
- W1571765640 hasConcept C199360897 @default.
- W1571765640 hasConcept C41008148 @default.
- W1571765640 hasConcept C43617362 @default.
- W1571765640 hasConcept C50644808 @default.
- W1571765640 hasConcept C58489278 @default.
- W1571765640 hasConcept C8880873 @default.
- W1571765640 hasConceptScore W1571765640C10138342 @default.
- W1571765640 hasConceptScore W1571765640C11413529 @default.
- W1571765640 hasConceptScore W1571765640C119857082 @default.
- W1571765640 hasConceptScore W1571765640C124101348 @default.
- W1571765640 hasConceptScore W1571765640C154945302 @default.
- W1571765640 hasConceptScore W1571765640C162324750 @default.
- W1571765640 hasConceptScore W1571765640C177264268 @default.
- W1571765640 hasConceptScore W1571765640C182306322 @default.
- W1571765640 hasConceptScore W1571765640C185592680 @default.
- W1571765640 hasConceptScore W1571765640C198531522 @default.
- W1571765640 hasConceptScore W1571765640C199360897 @default.
- W1571765640 hasConceptScore W1571765640C41008148 @default.
- W1571765640 hasConceptScore W1571765640C43617362 @default.
- W1571765640 hasConceptScore W1571765640C50644808 @default.
- W1571765640 hasConceptScore W1571765640C58489278 @default.
- W1571765640 hasConceptScore W1571765640C8880873 @default.
- W1571765640 hasLocation W15717656401 @default.
- W1571765640 hasOpenAccess W1571765640 @default.
- W1571765640 hasPrimaryLocation W15717656401 @default.
- W1571765640 hasRelatedWork W1517798509 @default.
- W1571765640 hasRelatedWork W1899120285 @default.
- W1571765640 hasRelatedWork W1975961566 @default.
- W1571765640 hasRelatedWork W1976107987 @default.
- W1571765640 hasRelatedWork W2070181657 @default.
- W1571765640 hasRelatedWork W2075910098 @default.
- W1571765640 hasRelatedWork W2078164481 @default.
- W1571765640 hasRelatedWork W2110131395 @default.
- W1571765640 hasRelatedWork W2133139659 @default.
- W1571765640 hasRelatedWork W2143621780 @default.
- W1571765640 hasRelatedWork W2145858732 @default.
- W1571765640 hasRelatedWork W2149115758 @default.
- W1571765640 hasRelatedWork W2162677617 @default.
- W1571765640 hasRelatedWork W2388601260 @default.
- W1571765640 hasRelatedWork W2577310290 @default.
- W1571765640 hasRelatedWork W2793934347 @default.
- W1571765640 hasRelatedWork W2914822949 @default.
- W1571765640 hasRelatedWork W3112204151 @default.
- W1571765640 hasRelatedWork W3122049748 @default.
- W1571765640 hasRelatedWork W1869172636 @default.
- W1571765640 isParatext "false" @default.
- W1571765640 isRetracted "false" @default.
- W1571765640 magId "1571765640" @default.
- W1571765640 workType "article" @default.