Matches in SemOpenAlex for { <https://semopenalex.org/work/W1572777377> ?p ?o ?g. }
Showing items 1 to 42 of
42
with 100 items per page.
- W1572777377 endingPage "110" @default.
- W1572777377 startingPage "99" @default.
- W1572777377 abstract "Smoothing Introduction In economics it is rarely the case that one is interested in a function of a single variable. Moreover, even if one is comfortable incorporating most of the explanatory variables parametrically (e.g., within a partial linear model), more than one variable may enter nonparametrically. The effects of geographic location – a two-dimensional variable – provides a good example. (Indeed, in Section 5.4.1 we estimate the effects of location on housing prices nonparametrically while permitting other housing characteristics to be modeled parametrically.) In this chapter we therefore turn to models in which there are several nonparametric variables. A variety of techniques are available. We will focus primarily on kernel and nonparametric least-squares estimators. However, the elementary “moving average smoother” which we considered in Section 3.1 has a close multidimensional relative in nearest-neighbor estimation. Spline techniques have natural generalizations (see particularly Wahba 1990 and Green and Silverman 1994). Local linear and local polynomial smoothers also have multivariate counterparts (see Fan and Gijbels 1996). Kernel Estimation of Functions of Several Variables Suppose f is a function of two variables and one has data ( y 1 , x 1 ), …, ( y n , x n ) on the model y i = f ( x i 1 , x i 2 ) + e i , where x i = ( x i 1 , x i 2 ). We will assume f is a function on the unit square. We want to estimate f ( x 0 ) by averaging nearby observations; in particular, we will average observations falling in a square of dimension 2λ × λ, which is centered at x 0 ." @default.
- W1572777377 created "2016-06-24" @default.
- W1572777377 creator A5086539984 @default.
- W1572777377 date "2003-06-02" @default.
- W1572777377 modified "2023-09-26" @default.
- W1572777377 title "Nonparametric Functions of Several Variables" @default.
- W1572777377 doi "https://doi.org/10.1017/cbo9780511615887.006" @default.
- W1572777377 hasPublicationYear "2003" @default.
- W1572777377 type Work @default.
- W1572777377 sameAs 1572777377 @default.
- W1572777377 citedByCount "0" @default.
- W1572777377 crossrefType "book-chapter" @default.
- W1572777377 hasAuthorship W1572777377A5086539984 @default.
- W1572777377 hasConcept C102366305 @default.
- W1572777377 hasConcept C105795698 @default.
- W1572777377 hasConcept C149782125 @default.
- W1572777377 hasConcept C28826006 @default.
- W1572777377 hasConcept C33923547 @default.
- W1572777377 hasConceptScore W1572777377C102366305 @default.
- W1572777377 hasConceptScore W1572777377C105795698 @default.
- W1572777377 hasConceptScore W1572777377C149782125 @default.
- W1572777377 hasConceptScore W1572777377C28826006 @default.
- W1572777377 hasConceptScore W1572777377C33923547 @default.
- W1572777377 hasLocation W15727773771 @default.
- W1572777377 hasOpenAccess W1572777377 @default.
- W1572777377 hasPrimaryLocation W15727773771 @default.
- W1572777377 hasRelatedWork W1513702731 @default.
- W1572777377 hasRelatedWork W1558842297 @default.
- W1572777377 hasRelatedWork W1843324721 @default.
- W1572777377 hasRelatedWork W188618474 @default.
- W1572777377 hasRelatedWork W1965291129 @default.
- W1572777377 hasRelatedWork W1994961894 @default.
- W1572777377 hasRelatedWork W2114668360 @default.
- W1572777377 hasRelatedWork W3094253175 @default.
- W1572777377 hasRelatedWork W3122780199 @default.
- W1572777377 hasRelatedWork W3141138882 @default.
- W1572777377 isParatext "false" @default.
- W1572777377 isRetracted "false" @default.
- W1572777377 magId "1572777377" @default.
- W1572777377 workType "book-chapter" @default.