Matches in SemOpenAlex for { <https://semopenalex.org/work/W1573353911> ?p ?o ?g. }
- W1573353911 abstract "Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications ranging from optoelectronics to sensing of small quantities of molecules. One of the key issues is that electromagnetic energy can be confined to a relatively small volume close to the metal surface. This field enhancement and the resonance frequency strongly depend on the shape and size of the metal structures. In this thesis, several fabrication methods to create these metal structures on the nanometer to micrometer scale are presented. The optical properties are studied with a special emphasis on the effect of shape anisotropy. Self-assembled 2D colloidal crystals are used as mask to fabricate arrays of metal triangles on a substrate. One of the limitations of this nanosphere lithography technique is that the size of the holes in the colloidal mask (through which the metal is evaporated) is determined by the size of the colloids in the mask. The masks, however, can be modified by use of MeV ion beams and/or wet-chemical growth of a thin layer of silica, resulting in a reduced hole size. Arbitrary symmetry and spacing can be obtained by use of optical tweezers and angle-resolved metal deposition. In contrast to pure metals, amorphous materials like silica are known to show anisotropic plastic deformation at constant volume when subject to MeV ion irradiation. Gold cores embedded in a silica matrix, however, show an elongation along the direction of the ion beam, whereas silver cores rather disintegrate. Silver nanocrystals in an ion-exchanged soda-lime glass redistribute themselves in arrays along the ion beam direction. The optical extinction becomes polarization-dependent, with red- and blue-shifts of the plasmon resonances for polarizations longitudinal and transverse to the arrays, respectively. The band splitting is attributed to near-field electromagnetic plasmon coupling within the arrays. Finite difference time domain simulations indicate that the combination of particle center-to-center spacing and diameter, rather than inter-particle spacing alone, is the key parameter determining the coupling strength. The resonant electric field is concentrated in the very small gaps between the particles in the array. With the MeV ion beam technique, it is possible to fabricate large substrates with relatively monodisperse oblate ellipsoidal silica-core/metal-shell colloids, with the short axis aligned in the direction of the ion beam. The optical extinction of these particles, is a complex function of the core radius and the shell thickness, due to a competition between phase retardation effects and the coupling between the surface plasmons at the inner and outer surfaces of the shell. After deformation, the extinction is angle- and polarization-dependent. Calculations indicate that large Au-shell particles can sustain cavity modes, for which the electric field is enhanced in almost the full volume of the dielectric core. The resonance frequency is sensitive to the size, shape and dielectric constant of the core, and the polarization direction." @default.
- W1573353911 created "2016-06-24" @default.
- W1573353911 creator A5039672489 @default.
- W1573353911 date "2006-09-25" @default.
- W1573353911 modified "2023-10-16" @default.
- W1573353911 title "Tunable plasmon resonances in anisotropic metal nanostructures" @default.
- W1573353911 cites W107577614 @default.
- W1573353911 cites W1556801875 @default.
- W1573353911 cites W1570895503 @default.
- W1573353911 cites W1599186670 @default.
- W1573353911 cites W1649808901 @default.
- W1573353911 cites W1660964545 @default.
- W1573353911 cites W1672766972 @default.
- W1573353911 cites W1903778810 @default.
- W1573353911 cites W1963786116 @default.
- W1573353911 cites W1965464915 @default.
- W1573353911 cites W1965785116 @default.
- W1573353911 cites W1968427968 @default.
- W1573353911 cites W1971486344 @default.
- W1573353911 cites W1975072805 @default.
- W1573353911 cites W1975563805 @default.
- W1573353911 cites W1976568654 @default.
- W1573353911 cites W1978084069 @default.
- W1573353911 cites W1978516394 @default.
- W1573353911 cites W1979883422 @default.
- W1573353911 cites W1980160815 @default.
- W1573353911 cites W1985538838 @default.
- W1573353911 cites W1986075972 @default.
- W1573353911 cites W1986656284 @default.
- W1573353911 cites W1987053558 @default.
- W1573353911 cites W1987522898 @default.
- W1573353911 cites W1989041549 @default.
- W1573353911 cites W1990299300 @default.
- W1573353911 cites W1992856419 @default.
- W1573353911 cites W1994265576 @default.
- W1573353911 cites W1999173254 @default.
- W1573353911 cites W1999198229 @default.
- W1573353911 cites W2001361583 @default.
- W1573353911 cites W2001955547 @default.
- W1573353911 cites W2005367376 @default.
- W1573353911 cites W2011548090 @default.
- W1573353911 cites W2013678666 @default.
- W1573353911 cites W2013745197 @default.
- W1573353911 cites W2016927087 @default.
- W1573353911 cites W2018254467 @default.
- W1573353911 cites W2020093054 @default.
- W1573353911 cites W2020343586 @default.
- W1573353911 cites W2021123497 @default.
- W1573353911 cites W2021387283 @default.
- W1573353911 cites W2021877782 @default.
- W1573353911 cites W2024477084 @default.
- W1573353911 cites W2024539289 @default.
- W1573353911 cites W2024758962 @default.
- W1573353911 cites W2024824810 @default.
- W1573353911 cites W2025272353 @default.
- W1573353911 cites W2028811333 @default.
- W1573353911 cites W2029725646 @default.
- W1573353911 cites W2030434722 @default.
- W1573353911 cites W2032392921 @default.
- W1573353911 cites W2036007784 @default.
- W1573353911 cites W2038630764 @default.
- W1573353911 cites W2039246404 @default.
- W1573353911 cites W2040782218 @default.
- W1573353911 cites W2040882982 @default.
- W1573353911 cites W2042076247 @default.
- W1573353911 cites W2044445614 @default.
- W1573353911 cites W2044940833 @default.
- W1573353911 cites W2045026119 @default.
- W1573353911 cites W2045723481 @default.
- W1573353911 cites W2046350457 @default.
- W1573353911 cites W2046895154 @default.
- W1573353911 cites W2048134161 @default.
- W1573353911 cites W2050622149 @default.
- W1573353911 cites W2050720517 @default.
- W1573353911 cites W2052194300 @default.
- W1573353911 cites W2052391516 @default.
- W1573353911 cites W2052892499 @default.
- W1573353911 cites W2053591432 @default.
- W1573353911 cites W2053825729 @default.
- W1573353911 cites W2054037985 @default.
- W1573353911 cites W2054560394 @default.
- W1573353911 cites W2054885303 @default.
- W1573353911 cites W2055125981 @default.
- W1573353911 cites W2056177922 @default.
- W1573353911 cites W2056993608 @default.
- W1573353911 cites W2058202164 @default.
- W1573353911 cites W2059436618 @default.
- W1573353911 cites W2060522543 @default.
- W1573353911 cites W2060641559 @default.
- W1573353911 cites W2061158555 @default.
- W1573353911 cites W2063944654 @default.
- W1573353911 cites W2065581105 @default.
- W1573353911 cites W2068326804 @default.
- W1573353911 cites W2070889113 @default.
- W1573353911 cites W2072204759 @default.
- W1573353911 cites W2072481204 @default.
- W1573353911 cites W2073885173 @default.
- W1573353911 cites W2074036176 @default.
- W1573353911 cites W2074902916 @default.
- W1573353911 cites W2077228161 @default.