Matches in SemOpenAlex for { <https://semopenalex.org/work/W1574102345> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1574102345 endingPage "241" @default.
- W1574102345 startingPage "211" @default.
- W1574102345 abstract "Results obtained during 20 yr of experimental research at Colorado State University (CSU) provide partial answers to questions posed by the conveners of this symposium on the response of near-coastal fluvial systems to sea-level change. These questions do not have easy answers because response will be variable depending upon system size, magnitude of base-level change and initial condition. Most flume experiments were designed to observe the effects of base-level change on the evolution of channel and valley networks, and they provide general conclusions regarding the effects of base-level change. Base-level change at a river's terminus has a geographically limited influence on a drainage system and that influence is usually confined to the coastal plain. Small base-level change is commonly accommodated by changes in channel sinuosity, roughness and width. Larger base-level changes, such as lowering of base level below a major topographic break, results in down cutting and the formation of one or more upslope valleys or valley networks. Channels commonly adjust rapidly to base-level change especially at the point of change. Base-level fall usually has a more dramatic effect on channels and valleys than does base-level rise. Incision resulting from a base-level fall concentrates energy in a narrow, deep valley that extends rapidly up valley. Aggradation from base-level rise, however, is restricted spatially by the position of the static backwater profile and the effect is over the entire valley width. Colorado State University experiments designed specifically to test the sequence stratigraphical paradigm reveal how variable and complex the morphological and sedimentological response on a continental shelf and slope can be depending on initial conditions and rates and magnitudes of base-level change. Shelf valleys formed only when base level dropped below a significant break in slope. Because the growth of these valleys occurred by headward erosion there was usually a lag time when no source-to-sink, cross-shelf bypass valley existed. During this time only fine-grained sediments were delivered to the deep-water offshore environment. This process may explain the muddy nature of early lowstand deposits in many deep-water basins around the world. Once a source-to-sink bypass valley developed, sediment from the hinterland drainage basin could be transported to form a coarse-grained lowstand fan. Experimental results suggest that late lowstand and early transgressive times are periods when the greatest volumes of coarse-grained sediment are transported to the downstream portions of the fluvial system. As base-level rise continued a lowstand wedge formed within the main bypass valley. When base-level rise accelerated and the shoreline moved onto the shelf, the transgressive systems tract within the bypass valley consisted of backstepping deltaic and marine deposits. Valley fills varied significantly between shelf bypass valleys and abandoned shelf break valleys. Valley cross-sections are modified during base-level rise by mass wasting and slumping of valley walls both in the flume experiments and in natural settings. Results of recent experiments at the University of Minnesota and Utrecht reveal many similarities and a few differences with CSU experiments. Furthermore, they add scaling factors that allow development of quantitative analogue experiments of real-world systems." @default.
- W1574102345 created "2016-06-24" @default.
- W1574102345 creator A5000480192 @default.
- W1574102345 creator A5049197359 @default.
- W1574102345 creator A5069287124 @default.
- W1574102345 creator A5030135986 @default.
- W1574102345 date "2005-02-15" @default.
- W1574102345 modified "2023-10-17" @default.
- W1574102345 title "The Morphological and Stratigraphical Effects of Base‐Level Change: a Review of Experimental Studies" @default.
- W1574102345 doi "https://doi.org/10.1002/9781444304350.ch13" @default.
- W1574102345 hasPublicationYear "2005" @default.
- W1574102345 type Work @default.
- W1574102345 sameAs 1574102345 @default.
- W1574102345 citedByCount "2" @default.
- W1574102345 countsByYear W15741023452019 @default.
- W1574102345 crossrefType "other" @default.
- W1574102345 hasAuthorship W1574102345A5000480192 @default.
- W1574102345 hasAuthorship W1574102345A5030135986 @default.
- W1574102345 hasAuthorship W1574102345A5049197359 @default.
- W1574102345 hasAuthorship W1574102345A5069287124 @default.
- W1574102345 hasConcept C109007969 @default.
- W1574102345 hasConcept C111368507 @default.
- W1574102345 hasConcept C112959462 @default.
- W1574102345 hasConcept C114793014 @default.
- W1574102345 hasConcept C127162648 @default.
- W1574102345 hasConcept C127313418 @default.
- W1574102345 hasConcept C127413603 @default.
- W1574102345 hasConcept C134306372 @default.
- W1574102345 hasConcept C142614818 @default.
- W1574102345 hasConcept C187320778 @default.
- W1574102345 hasConcept C2524010 @default.
- W1574102345 hasConcept C2778320725 @default.
- W1574102345 hasConcept C2779905724 @default.
- W1574102345 hasConcept C33923547 @default.
- W1574102345 hasConcept C38349280 @default.
- W1574102345 hasConcept C42058472 @default.
- W1574102345 hasConcept C74501621 @default.
- W1574102345 hasConcept C76155785 @default.
- W1574102345 hasConcept C76886044 @default.
- W1574102345 hasConceptScore W1574102345C109007969 @default.
- W1574102345 hasConceptScore W1574102345C111368507 @default.
- W1574102345 hasConceptScore W1574102345C112959462 @default.
- W1574102345 hasConceptScore W1574102345C114793014 @default.
- W1574102345 hasConceptScore W1574102345C127162648 @default.
- W1574102345 hasConceptScore W1574102345C127313418 @default.
- W1574102345 hasConceptScore W1574102345C127413603 @default.
- W1574102345 hasConceptScore W1574102345C134306372 @default.
- W1574102345 hasConceptScore W1574102345C142614818 @default.
- W1574102345 hasConceptScore W1574102345C187320778 @default.
- W1574102345 hasConceptScore W1574102345C2524010 @default.
- W1574102345 hasConceptScore W1574102345C2778320725 @default.
- W1574102345 hasConceptScore W1574102345C2779905724 @default.
- W1574102345 hasConceptScore W1574102345C33923547 @default.
- W1574102345 hasConceptScore W1574102345C38349280 @default.
- W1574102345 hasConceptScore W1574102345C42058472 @default.
- W1574102345 hasConceptScore W1574102345C74501621 @default.
- W1574102345 hasConceptScore W1574102345C76155785 @default.
- W1574102345 hasConceptScore W1574102345C76886044 @default.
- W1574102345 hasLocation W15741023451 @default.
- W1574102345 hasOpenAccess W1574102345 @default.
- W1574102345 hasPrimaryLocation W15741023451 @default.
- W1574102345 hasRelatedWork W1017877451 @default.
- W1574102345 hasRelatedWork W2074990124 @default.
- W1574102345 hasRelatedWork W2166405413 @default.
- W1574102345 hasRelatedWork W2174021042 @default.
- W1574102345 hasRelatedWork W2333891671 @default.
- W1574102345 hasRelatedWork W2353690275 @default.
- W1574102345 hasRelatedWork W2618039203 @default.
- W1574102345 hasRelatedWork W2890637726 @default.
- W1574102345 hasRelatedWork W4366986086 @default.
- W1574102345 hasRelatedWork W973858409 @default.
- W1574102345 isParatext "false" @default.
- W1574102345 isRetracted "false" @default.
- W1574102345 magId "1574102345" @default.
- W1574102345 workType "other" @default.