Matches in SemOpenAlex for { <https://semopenalex.org/work/W1574108106> ?p ?o ?g. }
- W1574108106 endingPage "3821" @default.
- W1574108106 startingPage "3814" @default.
- W1574108106 abstract "Compressed sensing is a technique used to accelerate magnetic resonance imaging (MRI) acquisition without compromising image quality. While it has proven particularly useful in dynamic imaging procedures such as cardiac cine, very few authors have applied it to functional magnetic resonance imaging (fMRI). The purpose of the present study was to check whether the prior image constrained compressed sensing (PICCS) algorithm, which is based on an available prior image, can improve the statistical maps in fMRI better than other strategies that also exploit temporal redundancy.PICCS was compared to spatiotemporal total variation (TTV) and k-t FASTER, since they have already demonstrated high performance and robustness in other MRI applications, such as cardiac cine MRI and resting state fMRI, respectively. The prior image for PICCS was the average of all undersampled data. Both PICCS and TTV were solved using the split Bregman formulation. K-t FASTER algorithm relies on matrix completion to reconstruct the undersampled k-spaces. The three algorithms were evaluated using two datasets with high and low signal-to-noise ratio (SNR)-BOLD contrast-acquired in a 7 T preclinical MRI scanner and retrospectively undersampled at various rates (i.e., acceleration factors). The authors evaluated their performance in terms of the sensitivity/specificity of BOLD detection through receiver operating characteristic curves and by visual inspection of the statistical maps.With high SNR studies, PICCS performed similarly to the state-of-the-art algorithms TTV and k-t FASTER and provided consistent BOLD signal at the ROI. In scenarios with low SNR and high acceleration factors, PICCS still provided consistent maps and higher sensitivity/specificity than TTV, whereas k-t FASTER failed to provide significant maps.The authors performed a comparison between three reconstructions (PICCS, TTV, and k-t FASTER) that exploit temporal redundancy in fMRI. The prior-based algorithm, PICCS, preserved BOLD activation and sensitivity/specificity better than TTV and k-t FASTER in noisy scenarios. The PICCS algorithm can potentially reach an acceleration factor of ×8 and still provide BOLD contrast in the ROI with an area under the curve over 0.99." @default.
- W1574108106 created "2016-06-24" @default.
- W1574108106 creator A5040785458 @default.
- W1574108106 creator A5070472940 @default.
- W1574108106 creator A5075123470 @default.
- W1574108106 creator A5080871017 @default.
- W1574108106 date "2015-06-09" @default.
- W1574108106 modified "2023-10-05" @default.
- W1574108106 title "Exploitation of temporal redundancy in compressed sensing reconstruction of fMRI studies with a prior-based algorithm (PICCS)" @default.
- W1574108106 cites W11613419 @default.
- W1574108106 cites W1599938249 @default.
- W1574108106 cites W1902888488 @default.
- W1574108106 cites W1974508089 @default.
- W1574108106 cites W1978333359 @default.
- W1574108106 cites W1983932741 @default.
- W1574108106 cites W1987794674 @default.
- W1574108106 cites W1991641922 @default.
- W1574108106 cites W2000086094 @default.
- W1574108106 cites W2011181254 @default.
- W1574108106 cites W2012505972 @default.
- W1574108106 cites W2016121318 @default.
- W1574108106 cites W2018804848 @default.
- W1574108106 cites W2025318789 @default.
- W1574108106 cites W2027492915 @default.
- W1574108106 cites W2030459589 @default.
- W1574108106 cites W2047071281 @default.
- W1574108106 cites W2051431490 @default.
- W1574108106 cites W2064524355 @default.
- W1574108106 cites W2066009595 @default.
- W1574108106 cites W2070467860 @default.
- W1574108106 cites W2072522618 @default.
- W1574108106 cites W2078993896 @default.
- W1574108106 cites W2080349548 @default.
- W1574108106 cites W2082695081 @default.
- W1574108106 cites W2089552762 @default.
- W1574108106 cites W2093198155 @default.
- W1574108106 cites W2101675075 @default.
- W1574108106 cites W2103461412 @default.
- W1574108106 cites W2111388536 @default.
- W1574108106 cites W2117876817 @default.
- W1574108106 cites W2127476889 @default.
- W1574108106 cites W2132122471 @default.
- W1574108106 cites W2134900886 @default.
- W1574108106 cites W2140333627 @default.
- W1574108106 cites W2142058898 @default.
- W1574108106 cites W2145096794 @default.
- W1574108106 cites W2149400409 @default.
- W1574108106 cites W2156739854 @default.
- W1574108106 cites W2163973643 @default.
- W1574108106 cites W2168933312 @default.
- W1574108106 cites W4212979045 @default.
- W1574108106 cites W4250955649 @default.
- W1574108106 cites W45291618 @default.
- W1574108106 cites W96739513 @default.
- W1574108106 doi "https://doi.org/10.1118/1.4921365" @default.
- W1574108106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26133583" @default.
- W1574108106 hasPublicationYear "2015" @default.
- W1574108106 type Work @default.
- W1574108106 sameAs 1574108106 @default.
- W1574108106 citedByCount "15" @default.
- W1574108106 countsByYear W15741081062015 @default.
- W1574108106 countsByYear W15741081062016 @default.
- W1574108106 countsByYear W15741081062017 @default.
- W1574108106 countsByYear W15741081062018 @default.
- W1574108106 countsByYear W15741081062019 @default.
- W1574108106 countsByYear W15741081062020 @default.
- W1574108106 countsByYear W15741081062021 @default.
- W1574108106 crossrefType "journal-article" @default.
- W1574108106 hasAuthorship W1574108106A5040785458 @default.
- W1574108106 hasAuthorship W1574108106A5070472940 @default.
- W1574108106 hasAuthorship W1574108106A5075123470 @default.
- W1574108106 hasAuthorship W1574108106A5080871017 @default.
- W1574108106 hasBestOaLocation W15741081061 @default.
- W1574108106 hasConcept C104317684 @default.
- W1574108106 hasConcept C111919701 @default.
- W1574108106 hasConcept C11413529 @default.
- W1574108106 hasConcept C115961682 @default.
- W1574108106 hasConcept C124851039 @default.
- W1574108106 hasConcept C126838900 @default.
- W1574108106 hasConcept C141379421 @default.
- W1574108106 hasConcept C143409427 @default.
- W1574108106 hasConcept C152124472 @default.
- W1574108106 hasConcept C153180895 @default.
- W1574108106 hasConcept C154945302 @default.
- W1574108106 hasConcept C185592680 @default.
- W1574108106 hasConcept C2779751349 @default.
- W1574108106 hasConcept C31601959 @default.
- W1574108106 hasConcept C31972630 @default.
- W1574108106 hasConcept C41008148 @default.
- W1574108106 hasConcept C55020928 @default.
- W1574108106 hasConcept C55493867 @default.
- W1574108106 hasConcept C63479239 @default.
- W1574108106 hasConcept C71924100 @default.
- W1574108106 hasConceptScore W1574108106C104317684 @default.
- W1574108106 hasConceptScore W1574108106C111919701 @default.
- W1574108106 hasConceptScore W1574108106C11413529 @default.
- W1574108106 hasConceptScore W1574108106C115961682 @default.
- W1574108106 hasConceptScore W1574108106C124851039 @default.