Matches in SemOpenAlex for { <https://semopenalex.org/work/W1574204554> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1574204554 abstract "Dimension reduction for regression analysis has been one of the most popular topics in the past two decades. It sees much progress with the introduction of the inverse regression, centered around the two key methods, sliced inverse regression (SIR) and sliced average variance estimation (SAVE). It is well known that SIR works poorly when the inverse conditional expectation is close to being nonrandom. SAVE and its many generalizations, which do not suffer from this drawback, lag behind SIR in many other circumstances. Usually a certain weighted hybrid of SIR and SAVE is necessary to improve overall performance. However, it is difficult to find the optimal mixture weights in a hybrid, and most such hybrid methods, as well as SAVE, require the restrictive constant (conditional) variance condition. We propose a much weaker condition and a new accompanying algorithm. This enables us to create several new central matrices that perform very favourably to existing central matrix based methods without referring to hybrids. The Canadian Journal of Statistics 41: 421–438; 2013 © 2013 Statistical Society of CanadaResumeLa reduction de la dimension en analyse de regression a ete un sujet de predilection au cours des deux dernieres decennies. D'importants progres ont ete realises grâce a l'introduction de la regression inverse, axee sur les deux methodes principales, soient la regression inverse par tranches (SIR) et l'estimation de la variance moyenne par tranches (SAVE). Il est bien connu que la methode SIR fonctionne mal lorsque l'esperance conditionnelle inverse est presque non aleatoire. La methode SAVE et ses nombreuses generalisations ne presentent pas cet inconvenient, mais elles comportent des lacunes a bien d'autres egards par rapport a SIR. Une methode ponderee hybride de SIR et SAVE est generalement necessaire afin d'ameliorer la performance globale. Cependant, il est difficile d’etablir les poids de melanges optimaux dans une methode hybride, et la plupart de ces hybrides, de meme que SAVE, necessitent une condition restrictive de constance de la variance (conditionnelle). Les auteurs proposent une condition beaucoup moins contraignante et un nouvel algorithme. Cette approche permet de creer de nouvelles matrices centrales qui donnent de tres bons resultats par rapport aux methodes existantes fondees sur les matrices centrales sans toutefois se referer aux methodes hybrides. La revue canadienne de statistique 41: 421–438; 2013 © 2013 Societe statistique du Canada" @default.
- W1574204554 created "2016-06-24" @default.
- W1574204554 creator A5017996548 @default.
- W1574204554 date "2013-05-23" @default.
- W1574204554 modified "2023-09-25" @default.
- W1574204554 title "On central matrix based methods in dimension reduction" @default.
- W1574204554 cites W1603452536 @default.
- W1574204554 cites W1973167793 @default.
- W1574204554 cites W2012801463 @default.
- W1574204554 cites W2024307779 @default.
- W1574204554 cites W2030219534 @default.
- W1574204554 cites W2032460509 @default.
- W1574204554 cites W2050083787 @default.
- W1574204554 cites W2050605581 @default.
- W1574204554 cites W2066740458 @default.
- W1574204554 cites W2068415701 @default.
- W1574204554 cites W2072738586 @default.
- W1574204554 cites W2081566336 @default.
- W1574204554 cites W2085143070 @default.
- W1574204554 cites W2086014844 @default.
- W1574204554 cites W2091886411 @default.
- W1574204554 cites W2095296627 @default.
- W1574204554 cites W2095482618 @default.
- W1574204554 cites W2129159757 @default.
- W1574204554 cites W2144405862 @default.
- W1574204554 cites W2159813797 @default.
- W1574204554 cites W2163490846 @default.
- W1574204554 cites W2171050905 @default.
- W1574204554 cites W2333152972 @default.
- W1574204554 cites W3099354022 @default.
- W1574204554 doi "https://doi.org/10.1002/cjs.11181" @default.
- W1574204554 hasPublicationYear "2013" @default.
- W1574204554 type Work @default.
- W1574204554 sameAs 1574204554 @default.
- W1574204554 citedByCount "0" @default.
- W1574204554 crossrefType "journal-article" @default.
- W1574204554 hasAuthorship W1574204554A5017996548 @default.
- W1574204554 hasConcept C105795698 @default.
- W1574204554 hasConcept C106487976 @default.
- W1574204554 hasConcept C114614502 @default.
- W1574204554 hasConcept C138885662 @default.
- W1574204554 hasConcept C149782125 @default.
- W1574204554 hasConcept C15708023 @default.
- W1574204554 hasConcept C159985019 @default.
- W1574204554 hasConcept C192562407 @default.
- W1574204554 hasConcept C207467116 @default.
- W1574204554 hasConcept C2524010 @default.
- W1574204554 hasConcept C33676613 @default.
- W1574204554 hasConcept C33923547 @default.
- W1574204554 hasConcept C41341539 @default.
- W1574204554 hasConcept C83546350 @default.
- W1574204554 hasConceptScore W1574204554C105795698 @default.
- W1574204554 hasConceptScore W1574204554C106487976 @default.
- W1574204554 hasConceptScore W1574204554C114614502 @default.
- W1574204554 hasConceptScore W1574204554C138885662 @default.
- W1574204554 hasConceptScore W1574204554C149782125 @default.
- W1574204554 hasConceptScore W1574204554C15708023 @default.
- W1574204554 hasConceptScore W1574204554C159985019 @default.
- W1574204554 hasConceptScore W1574204554C192562407 @default.
- W1574204554 hasConceptScore W1574204554C207467116 @default.
- W1574204554 hasConceptScore W1574204554C2524010 @default.
- W1574204554 hasConceptScore W1574204554C33676613 @default.
- W1574204554 hasConceptScore W1574204554C33923547 @default.
- W1574204554 hasConceptScore W1574204554C41341539 @default.
- W1574204554 hasConceptScore W1574204554C83546350 @default.
- W1574204554 hasLocation W15742045541 @default.
- W1574204554 hasOpenAccess W1574204554 @default.
- W1574204554 hasPrimaryLocation W15742045541 @default.
- W1574204554 isParatext "false" @default.
- W1574204554 isRetracted "false" @default.
- W1574204554 magId "1574204554" @default.
- W1574204554 workType "article" @default.