Matches in SemOpenAlex for { <https://semopenalex.org/work/W1574807622> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1574807622 abstract "This work shows the application of Wang’s Recurrent Neural Network with the Winner Takes All (WTA) principle to solve the classic Operational Research problem called the Traveling Salesman Problem. The upgrade version proposed in this work for the ‘Winner Takes All’ principle is called soft, because the winning neuron is updated with only part of the activation values of the other competing neurons. The problems in the TSPLIB (Traveling Salesman Problem Library Reinelt, 1991) were used to compare the soft version with the ‘Winner Takes All’ hard version and they show improvement in the results using the 'Winner Takes All' soft version in most of the problems tested. The implementation of the technique proposed in this paper uses the parameters of Wang‘s Neural Network for the Assignment problem (Wang, 1992; Hung & Wang, 2003) using the ’Winner Takes All' principle to form Hamiltonian circuits (Siqueira et al. 2007) and can be used for both symmetric and asymmetric Traveling Salesman Problems. The 2-opt technique is used to improve the routes found with the proposed Neural Network, thus becoming a technique that is competitive to other Neural Networks. Other heuristic techniques have been developed recently to solve the Traveling Salesman Problem, and the work of Misevicius et al. (2005) shows the use of the ITS (Iterated Tabu Search) technique with a combination of intensification and diversification of solutions for the TSP. This technique is combined with the 5-opt and errors are almost zero in almost all of the TSPLIB problems tested. The work of Wang et al. (2007) shows the use of Particle Swarm to solve the TSP with the use of the fraction (quantum) principle to better guide the search for solutions. The authors make comparisons with Hill Climbing, Simulated Annealing and Tabu Search, and show in a 14-cities case that the results are better than those of the other techniques. In the area of Artificial Neural Networks, an interesting technique can be found in the work of Massutti & Castro (2009), who use a mechanism to stabilize winning neurons and the centroids of the groups of cities for the growing and pruning the network. The authors show modifications in the Rabnet’s (real-valued antibody network) parameters for the Traveling Salesman Problem and comparisons made with TSPLIB problems solved by other techniques show that the Rabnet has better results." @default.
- W1574807622 created "2016-06-24" @default.
- W1574807622 creator A5019230371 @default.
- W1574807622 creator A5032914223 @default.
- W1574807622 creator A5088630232 @default.
- W1574807622 date "2010-11-30" @default.
- W1574807622 modified "2023-09-25" @default.
- W1574807622 title "Recurrent Neural Networks with the Soft 'Winner Takes All' Principle Applied to the Traveling Salesman Problem" @default.
- W1574807622 cites W1481178682 @default.
- W1574807622 cites W1519547529 @default.
- W1574807622 cites W1596041621 @default.
- W1574807622 cites W1597286183 @default.
- W1574807622 cites W1967172064 @default.
- W1574807622 cites W1978354018 @default.
- W1574807622 cites W2008023055 @default.
- W1574807622 cites W2015613941 @default.
- W1574807622 cites W2017708378 @default.
- W1574807622 cites W2042986967 @default.
- W1574807622 cites W2047501124 @default.
- W1574807622 cites W2069153690 @default.
- W1574807622 cites W2079075839 @default.
- W1574807622 cites W2080461238 @default.
- W1574807622 cites W2082647601 @default.
- W1574807622 cites W2084507157 @default.
- W1574807622 cites W2124993036 @default.
- W1574807622 cites W2157025561 @default.
- W1574807622 cites W2163279429 @default.
- W1574807622 cites W2163428398 @default.
- W1574807622 cites W2168997464 @default.
- W1574807622 cites W2744032014 @default.
- W1574807622 doi "https://doi.org/10.5772/13069" @default.
- W1574807622 hasPublicationYear "2010" @default.
- W1574807622 type Work @default.
- W1574807622 sameAs 1574807622 @default.
- W1574807622 citedByCount "2" @default.
- W1574807622 countsByYear W15748076222015 @default.
- W1574807622 countsByYear W15748076222020 @default.
- W1574807622 crossrefType "book-chapter" @default.
- W1574807622 hasAuthorship W1574807622A5019230371 @default.
- W1574807622 hasAuthorship W1574807622A5032914223 @default.
- W1574807622 hasAuthorship W1574807622A5088630232 @default.
- W1574807622 hasBestOaLocation W15748076221 @default.
- W1574807622 hasConcept C11413529 @default.
- W1574807622 hasConcept C154945302 @default.
- W1574807622 hasConcept C168976158 @default.
- W1574807622 hasConcept C175859090 @default.
- W1574807622 hasConcept C41008148 @default.
- W1574807622 hasConcept C50644808 @default.
- W1574807622 hasConceptScore W1574807622C11413529 @default.
- W1574807622 hasConceptScore W1574807622C154945302 @default.
- W1574807622 hasConceptScore W1574807622C168976158 @default.
- W1574807622 hasConceptScore W1574807622C175859090 @default.
- W1574807622 hasConceptScore W1574807622C41008148 @default.
- W1574807622 hasConceptScore W1574807622C50644808 @default.
- W1574807622 hasLocation W15748076221 @default.
- W1574807622 hasOpenAccess W1574807622 @default.
- W1574807622 hasPrimaryLocation W15748076221 @default.
- W1574807622 hasRelatedWork W1574807622 @default.
- W1574807622 hasRelatedWork W1809032065 @default.
- W1574807622 hasRelatedWork W2067911692 @default.
- W1574807622 hasRelatedWork W2095967750 @default.
- W1574807622 hasRelatedWork W2145891563 @default.
- W1574807622 hasRelatedWork W2378771288 @default.
- W1574807622 hasRelatedWork W2386387936 @default.
- W1574807622 hasRelatedWork W3001020386 @default.
- W1574807622 hasRelatedWork W3107474891 @default.
- W1574807622 hasRelatedWork W1629725936 @default.
- W1574807622 isParatext "false" @default.
- W1574807622 isRetracted "false" @default.
- W1574807622 magId "1574807622" @default.
- W1574807622 workType "book-chapter" @default.