Matches in SemOpenAlex for { <https://semopenalex.org/work/W1575109581> ?p ?o ?g. }
- W1575109581 abstract "Compton-scattering is a well-known process, observed and described by Arthur H. Compton in 1924, where the energy of an incident photon is modified by an inelastic scatter with matter (Compton, 1923). In 1948, Feenberg and Primakoff presented a theory of Compton backscattering, where photons can gain energy through collisions with energetic electrons (Feenberg & Primakoff, 1948). In 1963, Milburn and Arutyanyan and Tumanyan developed a concept for Compton-scattering light sources based on colliding an accelerated, relativistic electron beam and a laser (Arutyunyan & Tumanyan, 1964; Milburn, 1963). When an infrared photon scatters off a relativistic electron beam, its wavelength can be Doppler-upshifted to X-rays. Under properly designed conditions, we can generate high brightness, high flux, MeV-scale photons by colliding an intense laser pulse with a high quality, electron beam accelerated in a Linac. Despite being incoherent, the Compton-generated gamma-rays sharemany of the laser light characteristics: low divergence, high flux, narrow-bandwidth, and polarizability. Traditional laser sources operate in a 0.1−10 eV range, overlapping most of the molecular and atomic transitions. Transitions inside the nucleus have energies greater than 0.1MeV. Bymatching the gamma-ray energy to a particular nuclear transition, we can target a specific isotope, akin to using a laser to excite a particular atomic or molecular transition. Narrow-bandwidth gamma-ray sources enable high impact technological and scientific missions such as isotope-specific nuclear resonance fluorescence (NRF) (Bertozzi & Ledoux, 2005; Pruet et al., 2006), radiography of low density materials (Albert et al., 2010), precision nuclear spectroscopy (Pietralla et al., 2002), medical imaging and treatment (Carroll et al., 2003; Bech et al., 2009), and tests of quantum chromodynamics (Titov et al., 2006). In traditional X-ray radiography, the target must have a higher atomic number than the surrounding material. Hence, one could conceal an object by shielding with a higher Z-number material. In NRF gamma-ray imaging, the MeV class photons have very long absorption lengths and will transmit through meter lengths of material unless resonantly absorbed by a specific isotope. Some applications of NRF tuned gamma-rays include nuclear waste imaging and assay, monitoring of special nuclear material for homeland security, and tumor detection for medical treatment. Compton-based sources are attractive in the 100 keV and higher energy regime because they are highly compact and can be more than 15 orders of magnitude brighter than alternative methods for producing photons in this energy regime: Bremsstrahlung radiation 3" @default.
- W1575109581 created "2016-06-24" @default.
- W1575109581 creator A5017333712 @default.
- W1575109581 creator A5022157907 @default.
- W1575109581 creator A5024578538 @default.
- W1575109581 creator A5032580878 @default.
- W1575109581 creator A5052767061 @default.
- W1575109581 creator A5053421207 @default.
- W1575109581 creator A5056915114 @default.
- W1575109581 date "2010-11-30" @default.
- W1575109581 modified "2023-10-01" @default.
- W1575109581 title "Laser Technology for Compact, Narrow-bandwidth Gamma-ray Sources" @default.
- W1575109581 cites W130867452 @default.
- W1575109581 cites W1586754830 @default.
- W1575109581 cites W1624621172 @default.
- W1575109581 cites W1965150106 @default.
- W1575109581 cites W1971282247 @default.
- W1575109581 cites W1979444773 @default.
- W1575109581 cites W1982376276 @default.
- W1575109581 cites W1989037678 @default.
- W1575109581 cites W1990382796 @default.
- W1575109581 cites W1998604785 @default.
- W1575109581 cites W1998768038 @default.
- W1575109581 cites W2002692508 @default.
- W1575109581 cites W2006591271 @default.
- W1575109581 cites W2007992140 @default.
- W1575109581 cites W2009334659 @default.
- W1575109581 cites W2010823033 @default.
- W1575109581 cites W2018709779 @default.
- W1575109581 cites W2031955020 @default.
- W1575109581 cites W2034056577 @default.
- W1575109581 cites W2034077607 @default.
- W1575109581 cites W2035879262 @default.
- W1575109581 cites W2037993680 @default.
- W1575109581 cites W2038299072 @default.
- W1575109581 cites W2047050269 @default.
- W1575109581 cites W2047603098 @default.
- W1575109581 cites W2052430779 @default.
- W1575109581 cites W2054687750 @default.
- W1575109581 cites W2054717495 @default.
- W1575109581 cites W2062855465 @default.
- W1575109581 cites W2064644284 @default.
- W1575109581 cites W2066182370 @default.
- W1575109581 cites W2078393266 @default.
- W1575109581 cites W2079422282 @default.
- W1575109581 cites W2090600398 @default.
- W1575109581 cites W2093038450 @default.
- W1575109581 cites W2095913580 @default.
- W1575109581 cites W2113143412 @default.
- W1575109581 cites W2123035977 @default.
- W1575109581 cites W2136054247 @default.
- W1575109581 cites W2139923540 @default.
- W1575109581 cites W2148649482 @default.
- W1575109581 cites W2155426072 @default.
- W1575109581 cites W2158828207 @default.
- W1575109581 cites W2168272463 @default.
- W1575109581 cites W2320281589 @default.
- W1575109581 cites W2887780253 @default.
- W1575109581 cites W3022634097 @default.
- W1575109581 cites W3035586198 @default.
- W1575109581 cites W624093280 @default.
- W1575109581 doi "https://doi.org/10.5772/12998" @default.
- W1575109581 hasPublicationYear "2010" @default.
- W1575109581 type Work @default.
- W1575109581 sameAs 1575109581 @default.
- W1575109581 citedByCount "0" @default.
- W1575109581 crossrefType "book-chapter" @default.
- W1575109581 hasAuthorship W1575109581A5017333712 @default.
- W1575109581 hasAuthorship W1575109581A5022157907 @default.
- W1575109581 hasAuthorship W1575109581A5024578538 @default.
- W1575109581 hasAuthorship W1575109581A5032580878 @default.
- W1575109581 hasAuthorship W1575109581A5052767061 @default.
- W1575109581 hasAuthorship W1575109581A5053421207 @default.
- W1575109581 hasAuthorship W1575109581A5056915114 @default.
- W1575109581 hasBestOaLocation W15751095811 @default.
- W1575109581 hasConcept C120665830 @default.
- W1575109581 hasConcept C121332964 @default.
- W1575109581 hasConcept C147120987 @default.
- W1575109581 hasConcept C159317903 @default.
- W1575109581 hasConcept C184779094 @default.
- W1575109581 hasConcept C185544564 @default.
- W1575109581 hasConcept C520434653 @default.
- W1575109581 hasConcept C61203554 @default.
- W1575109581 hasConcept C7910260 @default.
- W1575109581 hasConceptScore W1575109581C120665830 @default.
- W1575109581 hasConceptScore W1575109581C121332964 @default.
- W1575109581 hasConceptScore W1575109581C147120987 @default.
- W1575109581 hasConceptScore W1575109581C159317903 @default.
- W1575109581 hasConceptScore W1575109581C184779094 @default.
- W1575109581 hasConceptScore W1575109581C185544564 @default.
- W1575109581 hasConceptScore W1575109581C520434653 @default.
- W1575109581 hasConceptScore W1575109581C61203554 @default.
- W1575109581 hasConceptScore W1575109581C7910260 @default.
- W1575109581 hasLocation W15751095811 @default.
- W1575109581 hasLocation W15751095812 @default.
- W1575109581 hasOpenAccess W1575109581 @default.
- W1575109581 hasPrimaryLocation W15751095811 @default.
- W1575109581 hasRelatedWork W1641605818 @default.
- W1575109581 hasRelatedWork W1679824689 @default.
- W1575109581 hasRelatedWork W1971313375 @default.