Matches in SemOpenAlex for { <https://semopenalex.org/work/W1575271607> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1575271607 abstract "Effective and accurate diagnosis of Alzheimer's disease (AD) or mild cognitive impairment (MCI) can be critical for early treatment and thus has attracted more and more attention nowadays. Since first introduced, machine learning methods have been gaining increasing popularity for AD related research. Among the various identified biomarkers, magnetic resonance imaging (MRI) are widely used for the prediction of AD or MCI. However, before a machine learning algorithm can be applied, image features need to be extracted to represent the MRI images. While good representations can be pivotal to the classification performance, almost all the previous studies typically rely on human labelling to find the regions of interest (ROI) which may be correlated to AD, such as hippocampus, amygdala, precuneus, etc. This procedure requires domain knowledge and is costly and tedious. Instead of relying on extraction of ROI features, it is more promising to remove manual ROI labelling from the pipeline and directly work on the raw MRI images. In other words, we can let the machine learning methods to figure out these informative and discriminative image structures for AD classification. In this work, we propose to learn deep convolutional image features using unsupervised and supervised learning. Deep learning has emerged as a powerful tool in the machine learning community and has been successfully applied to various tasks. We thus propose to exploit deep features of MRI images based on a pre-trained large convolutional neural network (CNN) for AD and MCI classification, which spares the effort of manual ROI annotation process." @default.
- W1575271607 created "2016-06-24" @default.
- W1575271607 creator A5006294869 @default.
- W1575271607 creator A5042271198 @default.
- W1575271607 date "2014-04-13" @default.
- W1575271607 modified "2023-09-27" @default.
- W1575271607 title "Learning Deep Convolutional Features for MRI Based Alzheimer's Disease Classification" @default.
- W1575271607 cites W179875071 @default.
- W1575271607 cites W1974874858 @default.
- W1575271607 cites W1995808738 @default.
- W1575271607 cites W2038003677 @default.
- W1575271607 cites W2060701556 @default.
- W1575271607 cites W2098120923 @default.
- W1575271607 cites W2101282194 @default.
- W1575271607 cites W2102605133 @default.
- W1575271607 cites W2104371740 @default.
- W1575271607 cites W2110798204 @default.
- W1575271607 cites W2112796928 @default.
- W1575271607 cites W2113792310 @default.
- W1575271607 cites W2128659236 @default.
- W1575271607 cites W2136922672 @default.
- W1575271607 cites W2146089088 @default.
- W1575271607 cites W2155541015 @default.
- W1575271607 cites W2157994299 @default.
- W1575271607 cites W2160547390 @default.
- W1575271607 cites W2162741153 @default.
- W1575271607 cites W2163922914 @default.
- W1575271607 cites W2167510172 @default.
- W1575271607 cites W2184852195 @default.
- W1575271607 hasPublicationYear "2014" @default.
- W1575271607 type Work @default.
- W1575271607 sameAs 1575271607 @default.
- W1575271607 citedByCount "3" @default.
- W1575271607 countsByYear W15752716072017 @default.
- W1575271607 countsByYear W15752716072020 @default.
- W1575271607 countsByYear W15752716072023 @default.
- W1575271607 crossrefType "posted-content" @default.
- W1575271607 hasAuthorship W1575271607A5006294869 @default.
- W1575271607 hasAuthorship W1575271607A5042271198 @default.
- W1575271607 hasConcept C108583219 @default.
- W1575271607 hasConcept C119857082 @default.
- W1575271607 hasConcept C153180895 @default.
- W1575271607 hasConcept C154945302 @default.
- W1575271607 hasConcept C19609008 @default.
- W1575271607 hasConcept C199360897 @default.
- W1575271607 hasConcept C41008148 @default.
- W1575271607 hasConcept C43521106 @default.
- W1575271607 hasConcept C81363708 @default.
- W1575271607 hasConcept C97931131 @default.
- W1575271607 hasConceptScore W1575271607C108583219 @default.
- W1575271607 hasConceptScore W1575271607C119857082 @default.
- W1575271607 hasConceptScore W1575271607C153180895 @default.
- W1575271607 hasConceptScore W1575271607C154945302 @default.
- W1575271607 hasConceptScore W1575271607C19609008 @default.
- W1575271607 hasConceptScore W1575271607C199360897 @default.
- W1575271607 hasConceptScore W1575271607C41008148 @default.
- W1575271607 hasConceptScore W1575271607C43521106 @default.
- W1575271607 hasConceptScore W1575271607C81363708 @default.
- W1575271607 hasConceptScore W1575271607C97931131 @default.
- W1575271607 hasLocation W15752716071 @default.
- W1575271607 hasOpenAccess W1575271607 @default.
- W1575271607 hasPrimaryLocation W15752716071 @default.
- W1575271607 hasRelatedWork W2132587081 @default.
- W1575271607 hasRelatedWork W2316116400 @default.
- W1575271607 hasRelatedWork W2477263588 @default.
- W1575271607 hasRelatedWork W2483198639 @default.
- W1575271607 hasRelatedWork W2782718222 @default.
- W1575271607 hasRelatedWork W2784137019 @default.
- W1575271607 hasRelatedWork W2789488272 @default.
- W1575271607 hasRelatedWork W2885139383 @default.
- W1575271607 hasRelatedWork W2907148404 @default.
- W1575271607 hasRelatedWork W2921693280 @default.
- W1575271607 hasRelatedWork W2936743816 @default.
- W1575271607 hasRelatedWork W2950062006 @default.
- W1575271607 hasRelatedWork W2981055130 @default.
- W1575271607 hasRelatedWork W2982519074 @default.
- W1575271607 hasRelatedWork W3092527447 @default.
- W1575271607 hasRelatedWork W3097518530 @default.
- W1575271607 hasRelatedWork W3100125480 @default.
- W1575271607 hasRelatedWork W3104971239 @default.
- W1575271607 hasRelatedWork W3147544217 @default.
- W1575271607 isParatext "false" @default.
- W1575271607 isRetracted "false" @default.
- W1575271607 magId "1575271607" @default.
- W1575271607 workType "article" @default.