Matches in SemOpenAlex for { <https://semopenalex.org/work/W1575501007> ?p ?o ?g. }
- W1575501007 endingPage "368" @default.
- W1575501007 startingPage "348" @default.
- W1575501007 abstract "The majority of research on efficient and scalable algorithms in computational science and engineering has focused on the forward problem: given parameter inputs, solve the governing equations to determine output quantities of interest. In contrast, here we consider the broader question: given a (large-scale) model containing uncertain parameters, (possibly) noisy observational data, and a prediction quantity of interest, how do we construct efficient and scalable algorithms to (1) infer the model parameters from the data (the deterministic inverse problem), (2) quantify the uncertainty in the inferred parameters (the Bayesian inference problem), and (3) propagate the resulting uncertain parameters through the model to issue predictions with quantified uncertainties (the forward uncertainty propagation problem)? We present efficient and scalable algorithms for this end-to-end, data-to-prediction process under the Gaussian approximation and in the context of modeling the flow of the Antarctic ice sheet and its effect on loss of grounded ice to the ocean. The ice is modeled as a viscous, incompressible, creeping, shear-thinning fluid. The observational data come from satellite measurements of surface ice flow velocity, and the uncertain parameter field to be inferred is the basal sliding parameter, represented by a heterogeneous coefficient in a Robin boundary condition at the base of the ice sheet. The prediction quantity of interest is the present-day ice mass flux from the Antarctic continent to the ocean. We show that the work required for executing this data-to-prediction process—measured in number of forward (and adjoint) ice sheet model solves—is independent of the state dimension, parameter dimension, data dimension, and the number of processor cores. The key to achieving this dimension independence is to exploit the fact that, despite their large size, the observational data typically provide only sparse information on model parameters. This property can be exploited to construct a low rank approximation of the linearized parameter-to-observable map via randomized SVD methods and adjoint-based actions of Hessians of the data misfit functional." @default.
- W1575501007 created "2016-06-24" @default.
- W1575501007 creator A5006603988 @default.
- W1575501007 creator A5012373865 @default.
- W1575501007 creator A5049331711 @default.
- W1575501007 creator A5057284080 @default.
- W1575501007 date "2015-09-01" @default.
- W1575501007 modified "2023-10-14" @default.
- W1575501007 title "Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet" @default.
- W1575501007 cites W1520565385 @default.
- W1575501007 cites W1578281258 @default.
- W1575501007 cites W1781084009 @default.
- W1575501007 cites W1968691112 @default.
- W1575501007 cites W1972283993 @default.
- W1575501007 cites W1979313559 @default.
- W1575501007 cites W1980858463 @default.
- W1575501007 cites W1989177281 @default.
- W1575501007 cites W1993091516 @default.
- W1575501007 cites W2000523285 @default.
- W1575501007 cites W2003815420 @default.
- W1575501007 cites W2029898724 @default.
- W1575501007 cites W2041535910 @default.
- W1575501007 cites W2046654683 @default.
- W1575501007 cites W2048369486 @default.
- W1575501007 cites W2049415037 @default.
- W1575501007 cites W2056753208 @default.
- W1575501007 cites W2058175297 @default.
- W1575501007 cites W2066295842 @default.
- W1575501007 cites W2067675319 @default.
- W1575501007 cites W2071341963 @default.
- W1575501007 cites W2072132691 @default.
- W1575501007 cites W2074836377 @default.
- W1575501007 cites W2114424556 @default.
- W1575501007 cites W2117756735 @default.
- W1575501007 cites W2128495182 @default.
- W1575501007 cites W2140200418 @default.
- W1575501007 cites W2141927412 @default.
- W1575501007 cites W2144631284 @default.
- W1575501007 cites W2149498546 @default.
- W1575501007 cites W2151653380 @default.
- W1575501007 cites W2156567817 @default.
- W1575501007 cites W2332163904 @default.
- W1575501007 cites W2962707560 @default.
- W1575501007 cites W2962841346 @default.
- W1575501007 doi "https://doi.org/10.1016/j.jcp.2015.04.047" @default.
- W1575501007 hasPublicationYear "2015" @default.
- W1575501007 type Work @default.
- W1575501007 sameAs 1575501007 @default.
- W1575501007 citedByCount "105" @default.
- W1575501007 countsByYear W15755010072015 @default.
- W1575501007 countsByYear W15755010072016 @default.
- W1575501007 countsByYear W15755010072017 @default.
- W1575501007 countsByYear W15755010072018 @default.
- W1575501007 countsByYear W15755010072019 @default.
- W1575501007 countsByYear W15755010072020 @default.
- W1575501007 countsByYear W15755010072021 @default.
- W1575501007 countsByYear W15755010072022 @default.
- W1575501007 countsByYear W15755010072023 @default.
- W1575501007 crossrefType "journal-article" @default.
- W1575501007 hasAuthorship W1575501007A5006603988 @default.
- W1575501007 hasAuthorship W1575501007A5012373865 @default.
- W1575501007 hasAuthorship W1575501007A5049331711 @default.
- W1575501007 hasAuthorship W1575501007A5057284080 @default.
- W1575501007 hasBestOaLocation W15755010071 @default.
- W1575501007 hasConcept C11413529 @default.
- W1575501007 hasConcept C114793014 @default.
- W1575501007 hasConcept C119857082 @default.
- W1575501007 hasConcept C123750103 @default.
- W1575501007 hasConcept C126255220 @default.
- W1575501007 hasConcept C127313418 @default.
- W1575501007 hasConcept C151730666 @default.
- W1575501007 hasConcept C2779343474 @default.
- W1575501007 hasConcept C32230216 @default.
- W1575501007 hasConcept C33923547 @default.
- W1575501007 hasConcept C41008148 @default.
- W1575501007 hasConceptScore W1575501007C11413529 @default.
- W1575501007 hasConceptScore W1575501007C114793014 @default.
- W1575501007 hasConceptScore W1575501007C119857082 @default.
- W1575501007 hasConceptScore W1575501007C123750103 @default.
- W1575501007 hasConceptScore W1575501007C126255220 @default.
- W1575501007 hasConceptScore W1575501007C127313418 @default.
- W1575501007 hasConceptScore W1575501007C151730666 @default.
- W1575501007 hasConceptScore W1575501007C2779343474 @default.
- W1575501007 hasConceptScore W1575501007C32230216 @default.
- W1575501007 hasConceptScore W1575501007C33923547 @default.
- W1575501007 hasConceptScore W1575501007C41008148 @default.
- W1575501007 hasFunder F4320306076 @default.
- W1575501007 hasFunder F4320306084 @default.
- W1575501007 hasFunder F4320332359 @default.
- W1575501007 hasFunder F4320338279 @default.
- W1575501007 hasLocation W15755010071 @default.
- W1575501007 hasLocation W15755010072 @default.
- W1575501007 hasLocation W15755010073 @default.
- W1575501007 hasLocation W15755010074 @default.
- W1575501007 hasLocation W15755010075 @default.
- W1575501007 hasOpenAccess W1575501007 @default.
- W1575501007 hasPrimaryLocation W15755010071 @default.
- W1575501007 hasRelatedWork W1991093342 @default.