Matches in SemOpenAlex for { <https://semopenalex.org/work/W1575722021> ?p ?o ?g. }
- W1575722021 endingPage "352" @default.
- W1575722021 startingPage "332" @default.
- W1575722021 abstract "Using over a million and a half extragalactic spectra from the Sloan Digital Sky Survey we study the correlations of the diffuse interstellar bands (DIBs) in the Milky Way. We measure the correlation between DIB strength and dust extinction for 142 DIBs using 24 stacked spectra in the reddening range E(B − V) < 0.2, many more lines than ever studied before. Most of the DIBs do not correlate with dust extinction. However, we find 10 weak and barely studied DIBs with correlations that are higher than 0.7 with dust extinction and confirm the high correlation of additional five strong DIBs. Furthermore, we find a pair of DIBs, 5925.9 and 5927.5 Å, which exhibits significant negative correlation with dust extinction, indicating that their carrier may be depleted on dust. We use Machine Learning algorithms to divide the DIBs to spectroscopic families based on 250 stacked spectra. By removing the dust dependence, we study how DIBs follow their local environment. We thus obtain six groups of weak DIBs, four of which are tightly associated with C2 or CN absorption lines." @default.
- W1575722021 created "2016-06-24" @default.
- W1575722021 creator A5023589580 @default.
- W1575722021 creator A5027488874 @default.
- W1575722021 creator A5053592523 @default.
- W1575722021 creator A5067360978 @default.
- W1575722021 creator A5068460228 @default.
- W1575722021 creator A5085250575 @default.
- W1575722021 date "2015-05-27" @default.
- W1575722021 modified "2023-10-15" @default.
- W1575722021 title "Using Machine Learning to classify the diffuse interstellar bands" @default.
- W1575722021 cites W11476871 @default.
- W1575722021 cites W1656041354 @default.
- W1575722021 cites W1975422846 @default.
- W1575722021 cites W1981288465 @default.
- W1575722021 cites W1984741977 @default.
- W1575722021 cites W1984812349 @default.
- W1575722021 cites W1985868689 @default.
- W1575722021 cites W1987365402 @default.
- W1575722021 cites W1995921710 @default.
- W1575722021 cites W1997904316 @default.
- W1575722021 cites W2005750915 @default.
- W1575722021 cites W2017224586 @default.
- W1575722021 cites W2020201108 @default.
- W1575722021 cites W2023815488 @default.
- W1575722021 cites W2057415426 @default.
- W1575722021 cites W2061100414 @default.
- W1575722021 cites W2061939373 @default.
- W1575722021 cites W2065626533 @default.
- W1575722021 cites W2066922779 @default.
- W1575722021 cites W2071483674 @default.
- W1575722021 cites W2075011956 @default.
- W1575722021 cites W2079809391 @default.
- W1575722021 cites W2085607051 @default.
- W1575722021 cites W2088454329 @default.
- W1575722021 cites W2089960039 @default.
- W1575722021 cites W2097708395 @default.
- W1575722021 cites W2101432910 @default.
- W1575722021 cites W2101573207 @default.
- W1575722021 cites W2103658806 @default.
- W1575722021 cites W2109606373 @default.
- W1575722021 cites W2111779260 @default.
- W1575722021 cites W2111817932 @default.
- W1575722021 cites W2128017872 @default.
- W1575722021 cites W2134498993 @default.
- W1575722021 cites W2134947323 @default.
- W1575722021 cites W2137756671 @default.
- W1575722021 cites W2160788748 @default.
- W1575722021 cites W2169351262 @default.
- W1575722021 cites W2953212186 @default.
- W1575722021 cites W3098204904 @default.
- W1575722021 cites W3098636268 @default.
- W1575722021 cites W3101774920 @default.
- W1575722021 cites W3103512003 @default.
- W1575722021 cites W3103524879 @default.
- W1575722021 cites W3123560092 @default.
- W1575722021 cites W4300176802 @default.
- W1575722021 doi "https://doi.org/10.1093/mnras/stv977" @default.
- W1575722021 hasPublicationYear "2015" @default.
- W1575722021 type Work @default.
- W1575722021 sameAs 1575722021 @default.
- W1575722021 citedByCount "19" @default.
- W1575722021 countsByYear W15757220212016 @default.
- W1575722021 countsByYear W15757220212017 @default.
- W1575722021 countsByYear W15757220212018 @default.
- W1575722021 countsByYear W15757220212020 @default.
- W1575722021 countsByYear W15757220212021 @default.
- W1575722021 countsByYear W15757220212022 @default.
- W1575722021 crossrefType "journal-article" @default.
- W1575722021 hasAuthorship W1575722021A5023589580 @default.
- W1575722021 hasAuthorship W1575722021A5027488874 @default.
- W1575722021 hasAuthorship W1575722021A5053592523 @default.
- W1575722021 hasAuthorship W1575722021A5067360978 @default.
- W1575722021 hasAuthorship W1575722021A5068460228 @default.
- W1575722021 hasAuthorship W1575722021A5085250575 @default.
- W1575722021 hasBestOaLocation W15757220211 @default.
- W1575722021 hasConcept C101991246 @default.
- W1575722021 hasConcept C120665830 @default.
- W1575722021 hasConcept C121332964 @default.
- W1575722021 hasConcept C125287762 @default.
- W1575722021 hasConcept C1276947 @default.
- W1575722021 hasConcept C150846664 @default.
- W1575722021 hasConcept C196939603 @default.
- W1575722021 hasConcept C44870925 @default.
- W1575722021 hasConcept C4839761 @default.
- W1575722021 hasConcept C555520305 @default.
- W1575722021 hasConcept C73329638 @default.
- W1575722021 hasConcept C98444146 @default.
- W1575722021 hasConceptScore W1575722021C101991246 @default.
- W1575722021 hasConceptScore W1575722021C120665830 @default.
- W1575722021 hasConceptScore W1575722021C121332964 @default.
- W1575722021 hasConceptScore W1575722021C125287762 @default.
- W1575722021 hasConceptScore W1575722021C1276947 @default.
- W1575722021 hasConceptScore W1575722021C150846664 @default.
- W1575722021 hasConceptScore W1575722021C196939603 @default.
- W1575722021 hasConceptScore W1575722021C44870925 @default.
- W1575722021 hasConceptScore W1575722021C4839761 @default.
- W1575722021 hasConceptScore W1575722021C555520305 @default.