Matches in SemOpenAlex for { <https://semopenalex.org/work/W1577887560> ?p ?o ?g. }
- W1577887560 endingPage "362" @default.
- W1577887560 startingPage "339" @default.
- W1577887560 abstract "Separation of PEGylated proteins is challenging because PEG itself is a relatively inert, neutral, hydrophilic polymer and the starting point for PEGylation is a pure protein. Thus, other than molecular weight and size, differences in the physicochemical properties typically used to fractionate proteins may be slight between different PEGylated forms of a protein. The usual properties of electrostatic charge and molecular weight (size) form the basis of the most commonly used separation techniques, particularly IEC, SEC, and ultrafiltration. The main effect of PEGylation on ion-exchange separations is to shield the electrostatic charges on the protein surface and to reduce the strength of interactions with higher PEG chain molecular weight or higher PEGylation extent. Thus, ion exchange can be used very effectively to separate on the basis of PEGylation extent for low extents, but as N increases, the effectiveness of separation rapidly diminishes. Separation of positional isomers is possible by RPC or ion exchange at analytical scale, but it is problematic at the preparative scale due to the small size of the differences in electrostatic interactions between isomers. PEGylation imparts significant changes in molecular weight with each chain added to a protein and there are corresponding increases in molecular size, so SEC and ultrafiltration (and dialysis) are effective methods for separating native and PEGylated proteins. However, the relative size difference between variants differing in PEGylation extent by one adduct reduces with N, so that efficient SEC separation between PEGylated species differing by one PEG chain is not likely to be economic at the preparative scale for N > 3. This holds true even for PEG proteins produced with large PEG polymers (Mr > or =20 kDa). For small PEG polymers (Mr = 2 kDa), only native and PEGylated species can be separated effectively. At the analytical scale, with proper calibration, SEC can provide valuable information on PEGylation extent. Membranes can be used to reduce the concentration of smaller molecular weight species by dialysis but cannot fully remove them, and an operational trade-off between purity and yield is required. Gel electrophoresis can confirm PEGylation reactions have proceeded and indicate the relative purity of products, but its use to confirm PEGylation extent requires further research. The main drawback of separations based solely upon molecular size is that they cannot differentiate between positional isomers. Capillary electrophoresis is an exception, quantitatively combining any or all of size, shape, conformational freedom, and small differences in protein surface properties to separate by both PEGylation extent and positional isomerism. Relative hydrophobicity is a useful property for analytical separations using RPC, but HIC, which is used routinely for production-scale purification of proteins, does not appear to be particularly useful for separation of PEGylated species." @default.
- W1577887560 created "2016-06-24" @default.
- W1577887560 creator A5072602362 @default.
- W1577887560 creator A5077995638 @default.
- W1577887560 date "2011-03-07" @default.
- W1577887560 modified "2023-10-10" @default.
- W1577887560 title "Purification of PEGylated Proteins" @default.
- W1577887560 cites W1555210583 @default.
- W1577887560 cites W1575345125 @default.
- W1577887560 cites W1578375703 @default.
- W1577887560 cites W1592673593 @default.
- W1577887560 cites W1775469721 @default.
- W1577887560 cites W1964547594 @default.
- W1577887560 cites W1965067289 @default.
- W1577887560 cites W1966057079 @default.
- W1577887560 cites W1969498090 @default.
- W1577887560 cites W1970266799 @default.
- W1577887560 cites W1971900631 @default.
- W1577887560 cites W1974707371 @default.
- W1577887560 cites W1979473024 @default.
- W1577887560 cites W1980363610 @default.
- W1577887560 cites W1980530079 @default.
- W1577887560 cites W1983941193 @default.
- W1577887560 cites W1984349476 @default.
- W1577887560 cites W1988092478 @default.
- W1577887560 cites W1988498979 @default.
- W1577887560 cites W1989067119 @default.
- W1577887560 cites W1992994818 @default.
- W1577887560 cites W1995358463 @default.
- W1577887560 cites W1996045920 @default.
- W1577887560 cites W1997070711 @default.
- W1577887560 cites W2000179017 @default.
- W1577887560 cites W2000691433 @default.
- W1577887560 cites W2005497829 @default.
- W1577887560 cites W2007487698 @default.
- W1577887560 cites W2009510047 @default.
- W1577887560 cites W2014573238 @default.
- W1577887560 cites W2018941903 @default.
- W1577887560 cites W2022870077 @default.
- W1577887560 cites W2026000657 @default.
- W1577887560 cites W2027192677 @default.
- W1577887560 cites W2030060645 @default.
- W1577887560 cites W2030480736 @default.
- W1577887560 cites W2031853153 @default.
- W1577887560 cites W2032264744 @default.
- W1577887560 cites W2034633336 @default.
- W1577887560 cites W2036159446 @default.
- W1577887560 cites W2037485696 @default.
- W1577887560 cites W2038445365 @default.
- W1577887560 cites W2047188856 @default.
- W1577887560 cites W2047333224 @default.
- W1577887560 cites W2047434416 @default.
- W1577887560 cites W2059429561 @default.
- W1577887560 cites W2062111121 @default.
- W1577887560 cites W2066175439 @default.
- W1577887560 cites W2068343030 @default.
- W1577887560 cites W2069493168 @default.
- W1577887560 cites W2069995085 @default.
- W1577887560 cites W2070066968 @default.
- W1577887560 cites W2076570370 @default.
- W1577887560 cites W2080264844 @default.
- W1577887560 cites W2082527820 @default.
- W1577887560 cites W2082850131 @default.
- W1577887560 cites W2083905387 @default.
- W1577887560 cites W2086863708 @default.
- W1577887560 cites W2088228529 @default.
- W1577887560 cites W2088740503 @default.
- W1577887560 cites W2089715069 @default.
- W1577887560 cites W2090410908 @default.
- W1577887560 cites W2093412288 @default.
- W1577887560 cites W2094149102 @default.
- W1577887560 cites W2094704598 @default.
- W1577887560 cites W2095930245 @default.
- W1577887560 cites W2103420855 @default.
- W1577887560 cites W2111412463 @default.
- W1577887560 cites W2131165288 @default.
- W1577887560 cites W2139296689 @default.
- W1577887560 cites W2141128221 @default.
- W1577887560 cites W2141474436 @default.
- W1577887560 cites W2142886710 @default.
- W1577887560 cites W2146029618 @default.
- W1577887560 cites W2482531400 @default.
- W1577887560 cites W2621620900 @default.
- W1577887560 cites W630513080 @default.
- W1577887560 cites W79959219 @default.
- W1577887560 cites W2090183132 @default.
- W1577887560 cites W2170562196 @default.
- W1577887560 doi "https://doi.org/10.1002/9780470939932.ch14" @default.
- W1577887560 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21954785" @default.
- W1577887560 hasPublicationYear "2011" @default.
- W1577887560 type Work @default.
- W1577887560 sameAs 1577887560 @default.
- W1577887560 citedByCount "28" @default.
- W1577887560 countsByYear W15778875602012 @default.
- W1577887560 countsByYear W15778875602013 @default.
- W1577887560 countsByYear W15778875602015 @default.
- W1577887560 countsByYear W15778875602016 @default.
- W1577887560 countsByYear W15778875602017 @default.