Matches in SemOpenAlex for { <https://semopenalex.org/work/W1578089044> ?p ?o ?g. }
- W1578089044 abstract "Since the discovery of 2:14:1 permanent magnets (PMs) in the early 80’s, the nanocrystalline and nanocomposite RE-Fe-B PMs attracted extensive attention both from the academia and industry because of their enhanced magnetic performances and potential applications (Croat et al., 1984; Givord et al.., 1984; Hadjipanayis et al., 1984; Onodera et al., 1984; Yamauchi et al., 1985; Jha & Davies, 1989; Pinkerton, 1991; Hadjipanayis, 1999; Liu et al., 2008; Fukagawa et al., 2010). Whereas the enhanced remanence and energy product of nanocrystalline NdFe-B PMs result from the exchange coupling between magnetically hard grains (Manaf et al., 1993), for the nanocomposite PMs the superior magnetic properties are the result of the fine mixture of RE2Fe14B hard magnetic and Fe-based soft magnetic grains, which are exchange coupled (Kneller & Hawig, 1991). Typically, the exchange coupling in nanophase magnets tends to reduce the coercivity (Mendoza-Suarez et al., 2000) and the energy product decreases with the volume fraction of the magnetic phase, which are well-known challenges in the processing of PMs. The recent work proved the important role played by magnetostatic interactions in the increase of the nucleation and coercive field values of nanocomposite permanent magnets in the detriment of the exchange coupled interactions (Gabay et al., 2006; Marinescu et al., 2008). The properties of nanocomposite PMs are strongly influenced by a number of process parameters like the composition, preparation method, annealing conditions, distribution of soft and hard magnetic nanograins (Cui et al., 2005). The large values of the remanence are related to the strength of the exchange interactions between the soft and hard magnetic grains, thus the reduction of the grains below the size of the hard magnetic phase domain walls is essential, but they should not decrease below a critical value, dependent on the nanocomposite composition, which causes the reduction of the magnetocrystalline anisotropy of the hard magnetic phase and, consequently, the drastic decrease of the coercive field. Nanocomposite magnets are expected to have maximum energy products as high as 120 MGOe, when the soft and hard magnetic phases are arranged in the proper way and the exchange interactions optimized (Skomski & Coey, 1993). However, the theoretical value of the maximum energy product of NdFeB magnets is calculated to be 512 kJ/m3 (64 MGOe) (Sagawa et al., 1985). There are two principal manufacturing routes to prepare RE-TM-B nanocomposite PMs: (i) the classical powder metallurgy or sintered magnet process (Sagawa et al., 1984; Durst &" @default.
- W1578089044 created "2016-06-24" @default.
- W1578089044 creator A5001919064 @default.
- W1578089044 creator A5064638859 @default.
- W1578089044 creator A5075624846 @default.
- W1578089044 creator A5079050548 @default.
- W1578089044 date "2011-04-19" @default.
- W1578089044 modified "2023-10-16" @default.
- W1578089044 title "Spark Plasma Sintered NdFeB-based Nanocomposite Hard Magnets with Enhanced Magnetic Properties" @default.
- W1578089044 cites W1617969407 @default.
- W1578089044 cites W1628666201 @default.
- W1578089044 cites W1666257399 @default.
- W1578089044 cites W1975422707 @default.
- W1578089044 cites W1980619291 @default.
- W1578089044 cites W1984605030 @default.
- W1578089044 cites W1990220258 @default.
- W1578089044 cites W1993147191 @default.
- W1578089044 cites W1997925697 @default.
- W1578089044 cites W2000441487 @default.
- W1578089044 cites W2002205989 @default.
- W1578089044 cites W2003952646 @default.
- W1578089044 cites W2006315042 @default.
- W1578089044 cites W2011156196 @default.
- W1578089044 cites W2014723912 @default.
- W1578089044 cites W2015163485 @default.
- W1578089044 cites W2019830949 @default.
- W1578089044 cites W2020883157 @default.
- W1578089044 cites W2021843045 @default.
- W1578089044 cites W2022119289 @default.
- W1578089044 cites W2025429406 @default.
- W1578089044 cites W2025796757 @default.
- W1578089044 cites W2027710185 @default.
- W1578089044 cites W2029535037 @default.
- W1578089044 cites W2029601312 @default.
- W1578089044 cites W2033746730 @default.
- W1578089044 cites W2035449550 @default.
- W1578089044 cites W2042745552 @default.
- W1578089044 cites W2049918165 @default.
- W1578089044 cites W2049939418 @default.
- W1578089044 cites W2052115737 @default.
- W1578089044 cites W2064355880 @default.
- W1578089044 cites W2067840900 @default.
- W1578089044 cites W2085310591 @default.
- W1578089044 cites W2085810107 @default.
- W1578089044 cites W2086482432 @default.
- W1578089044 cites W2089671806 @default.
- W1578089044 cites W2093882472 @default.
- W1578089044 cites W2107935001 @default.
- W1578089044 cites W2118633761 @default.
- W1578089044 cites W2126432661 @default.
- W1578089044 cites W2138003325 @default.
- W1578089044 cites W2322993236 @default.
- W1578089044 cites W2323865246 @default.
- W1578089044 cites W2466275787 @default.
- W1578089044 cites W2950429666 @default.
- W1578089044 cites W2952011721 @default.
- W1578089044 cites W3150603303 @default.
- W1578089044 doi "https://doi.org/10.5772/15459" @default.
- W1578089044 hasPublicationYear "2011" @default.
- W1578089044 type Work @default.
- W1578089044 sameAs 1578089044 @default.
- W1578089044 citedByCount "2" @default.
- W1578089044 countsByYear W15780890442013 @default.
- W1578089044 countsByYear W15780890442014 @default.
- W1578089044 crossrefType "book-chapter" @default.
- W1578089044 hasAuthorship W1578089044A5001919064 @default.
- W1578089044 hasAuthorship W1578089044A5064638859 @default.
- W1578089044 hasAuthorship W1578089044A5075624846 @default.
- W1578089044 hasAuthorship W1578089044A5079050548 @default.
- W1578089044 hasBestOaLocation W15780890441 @default.
- W1578089044 hasConcept C110135171 @default.
- W1578089044 hasConcept C121332964 @default.
- W1578089044 hasConcept C127413603 @default.
- W1578089044 hasConcept C159985019 @default.
- W1578089044 hasConcept C16389437 @default.
- W1578089044 hasConcept C185544564 @default.
- W1578089044 hasConcept C191897082 @default.
- W1578089044 hasConcept C192562407 @default.
- W1578089044 hasConcept C199360897 @default.
- W1578089044 hasConcept C2776014600 @default.
- W1578089044 hasConcept C2781215313 @default.
- W1578089044 hasConcept C41008148 @default.
- W1578089044 hasConcept C78519656 @default.
- W1578089044 hasConcept C82706917 @default.
- W1578089044 hasConcept C87976508 @default.
- W1578089044 hasConcept C92880739 @default.
- W1578089044 hasConceptScore W1578089044C110135171 @default.
- W1578089044 hasConceptScore W1578089044C121332964 @default.
- W1578089044 hasConceptScore W1578089044C127413603 @default.
- W1578089044 hasConceptScore W1578089044C159985019 @default.
- W1578089044 hasConceptScore W1578089044C16389437 @default.
- W1578089044 hasConceptScore W1578089044C185544564 @default.
- W1578089044 hasConceptScore W1578089044C191897082 @default.
- W1578089044 hasConceptScore W1578089044C192562407 @default.
- W1578089044 hasConceptScore W1578089044C199360897 @default.
- W1578089044 hasConceptScore W1578089044C2776014600 @default.
- W1578089044 hasConceptScore W1578089044C2781215313 @default.
- W1578089044 hasConceptScore W1578089044C41008148 @default.
- W1578089044 hasConceptScore W1578089044C78519656 @default.
- W1578089044 hasConceptScore W1578089044C82706917 @default.