Matches in SemOpenAlex for { <https://semopenalex.org/work/W1579040804> ?p ?o ?g. }
- W1579040804 abstract "The number of distributed control systems in modern vehicles has increased exponentially over the past decades. Today’s performance improvements and innovations in the automotive industry are often resolved using embedded control systems. As a result, a modern vehicle can be regarded as a complex mechatronic system. However, control design for such systems, in practice, often comes down to time-consuming online tuning and calibration techniques, rather than a more systematic, model-based control design approach. The main goal of this thesis is to contribute to a corresponding paradigm shift, targeting the use of systematic, model-based control design approaches in practice. This implies the use of control-oriented modeling and the specification of corresponding performance requirements as a basis for the actual controller synthesis. Adopting a systematic, model-based control design approach, as opposed to pragmatic, online tuning and calibration techniques, is a prerequisite for the application of state-of-the-art controller synthesis methods. These methods enable to achieve guarantees regarding robustness, performance, stability, and optimality of the synthesized controller. Furthermore, from a practical point-of-view, it forms a basis for the reduction of tuning and calibration effort via automated controller synthesis, and fulfilling increasingly stringent performance demands. To demonstrate these opportunities, case studies are defined and executed. In all cases, actual implementation is pursued using test vehicles and a hardware-in-the-loop setup. • Case I: Judder-induced oscillations in the driveline are resolved using a robustly stable drive-off controller. The controller prevents the need for re-tuning if the dynamics of the system change due to wear. A hardware-in-the-loop setup, including actual sensor and actuator dynamics, is used for experimental validation. • Case II: A solution for variations in the closed-loop behavior of cruise control functionality is proposed, explicitly taking into account large variations in both the gear ratio and the vehicle loading of heavy duty vehicles. Experimental validation is done on a heavy duty vehicle, a DAF XF105 with and without a fully loaded trailer. • Case III: A systematic approach for the design of an adaptive cruise control is proposed. The resulting parameterized design enables intuitive tuning directly related to comfort and safety of the driving behavior and significantly reduces tuning effort. The design is validated on an Audi S8, performing on-the-road experiments. • Case IV: The design of a cooperative adaptive cruise control is presented, focusing on the feasibility of implementation. Correspondingly, a necessary and sufficient condition for string stability is derived. The design is experimentally tested using two Citroen C4’s, improving traffic throughput with respect to standard adaptive cruise control functionality, while guaranteeing string stability of the traffic flow. The case studies consider representative automotive control problems, in the sense that typical challenges are addressed, being variable operating conditions and global performance qualifiers. Based on the case studies, a generic classification of automotive control problems is derived, distinguishing problems at i) a full-vehicle level, ii) an in-vehicle level, and iii) a component level. The classification facilitates a characterization of automotive control problems on the basis of the required modeling and the specification of corresponding performance requirements. Full-vehicle level functionality focuses on the specification of desired vehicle behavior for the vehicle as a whole. Typically, the required modeling is limited, whereas the translation of global performance qualifiers into control-oriented performance requirements can be difficult. In-vehicle level functionality focuses on actual control of the (complex) vehicle dynamics. The modeling and the specification of performance requirements are typically influenced by a wide variety of operating conditions. Furthermore, the case studies represent practical application examples that are specifically suitable to apply a specific set of state-of-the-art controller synthesis methods, being robust control, model predictive control, and gain scheduling or linear parameter varying control. The case studies show the applicability of these methods in practice. Nevertheless, the theoretical complexity of the methods typically translates into a high computational burden, while insight in the resulting controller decreases, complicating, for example, (online) fine-tuning of the controller. Accordingly, more efficient algorithms and dedicated tools are required to improve practical implementation of controller synthesis methods." @default.
- W1579040804 created "2016-06-24" @default.
- W1579040804 creator A5056327541 @default.
- W1579040804 date "2006-03-01" @default.
- W1579040804 modified "2023-09-23" @default.
- W1579040804 title "Model-based control for automotive applications" @default.
- W1579040804 cites W1486506311 @default.
- W1579040804 cites W1491838660 @default.
- W1579040804 cites W1498878718 @default.
- W1579040804 cites W1503883009 @default.
- W1579040804 cites W1507042534 @default.
- W1579040804 cites W1511213320 @default.
- W1579040804 cites W1511664035 @default.
- W1579040804 cites W1515031565 @default.
- W1579040804 cites W1541512967 @default.
- W1579040804 cites W1548366749 @default.
- W1579040804 cites W1560815788 @default.
- W1579040804 cites W1561941139 @default.
- W1579040804 cites W1564840975 @default.
- W1579040804 cites W1570325399 @default.
- W1579040804 cites W1593028398 @default.
- W1579040804 cites W1596634559 @default.
- W1579040804 cites W1597067418 @default.
- W1579040804 cites W1600066860 @default.
- W1579040804 cites W1685204595 @default.
- W1579040804 cites W177606981 @default.
- W1579040804 cites W1875748937 @default.
- W1579040804 cites W1968651586 @default.
- W1579040804 cites W1971490091 @default.
- W1579040804 cites W1974534743 @default.
- W1579040804 cites W1975051432 @default.
- W1579040804 cites W197578431 @default.
- W1579040804 cites W1976643107 @default.
- W1579040804 cites W1982166314 @default.
- W1579040804 cites W1986980338 @default.
- W1579040804 cites W1987989256 @default.
- W1579040804 cites W1989000486 @default.
- W1579040804 cites W1989811273 @default.
- W1579040804 cites W1993170675 @default.
- W1579040804 cites W1994369533 @default.
- W1579040804 cites W1997170596 @default.
- W1579040804 cites W1998599796 @default.
- W1579040804 cites W2001575886 @default.
- W1579040804 cites W2001948795 @default.
- W1579040804 cites W2004176781 @default.
- W1579040804 cites W2005687664 @default.
- W1579040804 cites W2006867049 @default.
- W1579040804 cites W2011087178 @default.
- W1579040804 cites W2020016632 @default.
- W1579040804 cites W2020562832 @default.
- W1579040804 cites W2024206252 @default.
- W1579040804 cites W2027300760 @default.
- W1579040804 cites W2031711324 @default.
- W1579040804 cites W2031754316 @default.
- W1579040804 cites W2031808137 @default.
- W1579040804 cites W2034190723 @default.
- W1579040804 cites W2038730444 @default.
- W1579040804 cites W2039200505 @default.
- W1579040804 cites W2039522866 @default.
- W1579040804 cites W2043695188 @default.
- W1579040804 cites W2049229501 @default.
- W1579040804 cites W2053089491 @default.
- W1579040804 cites W2059991414 @default.
- W1579040804 cites W2062453921 @default.
- W1579040804 cites W2070760850 @default.
- W1579040804 cites W2074338512 @default.
- W1579040804 cites W2074401703 @default.
- W1579040804 cites W2077418568 @default.
- W1579040804 cites W2077554058 @default.
- W1579040804 cites W2079622286 @default.
- W1579040804 cites W2080216741 @default.
- W1579040804 cites W2082483338 @default.
- W1579040804 cites W2085094567 @default.
- W1579040804 cites W2095233962 @default.
- W1579040804 cites W2098594442 @default.
- W1579040804 cites W2101691062 @default.
- W1579040804 cites W2103796976 @default.
- W1579040804 cites W2104807148 @default.
- W1579040804 cites W2104925479 @default.
- W1579040804 cites W2105101648 @default.
- W1579040804 cites W2106511376 @default.
- W1579040804 cites W2107556430 @default.
- W1579040804 cites W2108489060 @default.
- W1579040804 cites W2110442347 @default.
- W1579040804 cites W2111204826 @default.
- W1579040804 cites W2112156114 @default.
- W1579040804 cites W2112484799 @default.
- W1579040804 cites W2114005377 @default.
- W1579040804 cites W2115424783 @default.
- W1579040804 cites W2116084466 @default.
- W1579040804 cites W2116446771 @default.
- W1579040804 cites W2116590803 @default.
- W1579040804 cites W2117172651 @default.
- W1579040804 cites W2120219219 @default.
- W1579040804 cites W2121030432 @default.
- W1579040804 cites W2122543354 @default.
- W1579040804 cites W2128441834 @default.
- W1579040804 cites W2131588967 @default.
- W1579040804 cites W2138673304 @default.
- W1579040804 cites W2138820827 @default.