Matches in SemOpenAlex for { <https://semopenalex.org/work/W158045392> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W158045392 endingPage "148" @default.
- W158045392 startingPage "144" @default.
- W158045392 abstract "ABSTRACTBased on stochastic calculus, we provide a rigorous formu-lation for the numerical evaluation of the error probabilitiesof two modulation techniques for the chaotic Lorenz com-munication system with AWGN disturbance. These resultsprovidefurtherunderstandingon the robust synchronizationability of the Lorenz system to noise. The synchronizationrobustness of Lorenz systems for various time scaling fac-tors is also discussed. An approximate model of the vari-ance of the sufficient statistic of the chaotic communicationis derived, which permits a comparison of the chaotic com-munication system performance to a conventional commu-nication system.1. INTRODUCTIONSince Pecora and Carroll [1] have theoretically and experi-mentally shown that two identical chaotic dynamic systemscan be synchronized, chaotic signals with inherently broad-band,noise-likeandunpredictablepropertieshavebeenpro-posedforpossiblecommunicationmodulation/codingwave-forms[2][3]. A chaotic system possess self-synchronizationproperty if it can be decomposed into two subsystems: adrive system and a conditionally stable response subsystemthat synchronize when driven with a common signal. Basedon the drive-responseconfigurationofsynchronization,spe-cific chaoticcommunicationtechniques,suchaschaoticsig-nal masking, chaotic switching modulation [2][3][4], anddynamicfeedbackmodulationofinformationsignal[5], havebeen considered. As the basic operation of those techniquesis highly dependent on the self-synchronization property ofthe chaotic systems, the robust ability of the systems to per-turbationin the drivesignal is a crucialfactorin determiningthe system performance. Since the AWGN channel consti-tutes the most basic component of a communication link,the understanding of the robust self-synchronization abilityof a chaotic communication system to WGN is necessaryfor system design. However, because of the inherent non-linearity of a chaotic system, it is generally difficult to ob-tain an analytic solution and thus numerical simulations areneeded.Cuomo et al [2] have addressed the numerical evalua-tion of the SNR improvement of the Lorenz chaotic com-munication system based on deterministic numerical algo-rithms. It is known that commercial numerical computa-tionalpackagesusingthestandardEulerorRunge-Kutta(RK)algorithmsfordeterministicdifferentialequationstoapprox-imate the solution to nonlinear stochastic differential equa-tion(SDE) will incur significant errors [6]. This is partic-ularly true for a nonlinear chaotic dynamical system mod-eling the transmitter inputting into an AWGN channel andfollowed by another nonlinear chaotic dynamical system.In this paper, we use the stochastic calculus approachto perform the integration algorithm for the sample func-tions of nonlinear dynamic systems excited by the stochas-tic white noise. Depending on the precise interpretation ofthe white noise, there are two different solutions to the SDEbased on the Stratonovich or Ito integral [9]. Using the con-version between them, a correct numerical integration algo-rithm in the Ito sense is introduced. With this algorithm, thecorrect error probability of the robust self-synchronizationLorenz communication system with AWGN perturbation ispresented. The self-synchronization robustness of Lorenzsystems for varioustime scaling factors, changing the speedof system evolution, is also discussed. Furthermore, weexplicitly demonstrate the performance evaluation of thismodel using deterministic numerical algorithms yields in-correct results. Finally, the numerical evaluation and com-parison of error probabilities among dynamic feedback andchaotic switching modulation for a Lorenz system and aconventional communication system are provided.2. PROBLEM DESCRIPTIONThe modified Lorenz system [2] is given by" @default.
- W158045392 created "2016-06-24" @default.
- W158045392 creator A5043680165 @default.
- W158045392 creator A5078428149 @default.
- W158045392 date "1999-01-01" @default.
- W158045392 modified "2023-09-24" @default.
- W158045392 title "Stochastic calculus numerical evaluation of chaotic communication system performance." @default.
- W158045392 cites W1970442252 @default.
- W158045392 cites W1973376127 @default.
- W158045392 cites W1982414368 @default.
- W158045392 cites W1989418097 @default.
- W158045392 cites W2061695646 @default.
- W158045392 cites W2096965069 @default.
- W158045392 cites W2103941230 @default.
- W158045392 cites W2128995499 @default.
- W158045392 cites W2799664482 @default.
- W158045392 hasPublicationYear "1999" @default.
- W158045392 type Work @default.
- W158045392 sameAs 158045392 @default.
- W158045392 citedByCount "0" @default.
- W158045392 crossrefType "journal-article" @default.
- W158045392 hasAuthorship W158045392A5043680165 @default.
- W158045392 hasAuthorship W158045392A5078428149 @default.
- W158045392 hasConcept C112633086 @default.
- W158045392 hasConcept C115961682 @default.
- W158045392 hasConcept C127162648 @default.
- W158045392 hasConcept C151510863 @default.
- W158045392 hasConcept C154945302 @default.
- W158045392 hasConcept C169334058 @default.
- W158045392 hasConcept C202759130 @default.
- W158045392 hasConcept C2775924081 @default.
- W158045392 hasConcept C2777052490 @default.
- W158045392 hasConcept C2778562939 @default.
- W158045392 hasConcept C33923547 @default.
- W158045392 hasConcept C41008148 @default.
- W158045392 hasConcept C47446073 @default.
- W158045392 hasConcept C76155785 @default.
- W158045392 hasConcept C99498987 @default.
- W158045392 hasConceptScore W158045392C112633086 @default.
- W158045392 hasConceptScore W158045392C115961682 @default.
- W158045392 hasConceptScore W158045392C127162648 @default.
- W158045392 hasConceptScore W158045392C151510863 @default.
- W158045392 hasConceptScore W158045392C154945302 @default.
- W158045392 hasConceptScore W158045392C169334058 @default.
- W158045392 hasConceptScore W158045392C202759130 @default.
- W158045392 hasConceptScore W158045392C2775924081 @default.
- W158045392 hasConceptScore W158045392C2777052490 @default.
- W158045392 hasConceptScore W158045392C2778562939 @default.
- W158045392 hasConceptScore W158045392C33923547 @default.
- W158045392 hasConceptScore W158045392C41008148 @default.
- W158045392 hasConceptScore W158045392C47446073 @default.
- W158045392 hasConceptScore W158045392C76155785 @default.
- W158045392 hasConceptScore W158045392C99498987 @default.
- W158045392 hasLocation W1580453921 @default.
- W158045392 hasOpenAccess W158045392 @default.
- W158045392 hasPrimaryLocation W1580453921 @default.
- W158045392 hasRelatedWork W1489868140 @default.
- W158045392 hasRelatedWork W1754639534 @default.
- W158045392 hasRelatedWork W1977444293 @default.
- W158045392 hasRelatedWork W2054221752 @default.
- W158045392 hasRelatedWork W2057518119 @default.
- W158045392 hasRelatedWork W2063496519 @default.
- W158045392 hasRelatedWork W2067733097 @default.
- W158045392 hasRelatedWork W2070146222 @default.
- W158045392 hasRelatedWork W2084446885 @default.
- W158045392 hasRelatedWork W2091691192 @default.
- W158045392 hasRelatedWork W2107921555 @default.
- W158045392 hasRelatedWork W2116082125 @default.
- W158045392 hasRelatedWork W2124320144 @default.
- W158045392 hasRelatedWork W2127826342 @default.
- W158045392 hasRelatedWork W2156190982 @default.
- W158045392 hasRelatedWork W2171252369 @default.
- W158045392 hasRelatedWork W2288395719 @default.
- W158045392 hasRelatedWork W2590905045 @default.
- W158045392 hasRelatedWork W2711898527 @default.
- W158045392 hasRelatedWork W98211343 @default.
- W158045392 isParatext "false" @default.
- W158045392 isRetracted "false" @default.
- W158045392 magId "158045392" @default.
- W158045392 workType "article" @default.