Matches in SemOpenAlex for { <https://semopenalex.org/work/W1580821384> ?p ?o ?g. }
- W1580821384 abstract "Background: The $ensuremath{gamma}$ process in core-collapse supernova explosions is thought to explain the origin of proton-rich isotopes between Se and Hg, the so-called $p$ nuclei. The majority of the reaction rates for $ensuremath{gamma}$ process reaction network studies has to be predicted in Hauser-Feshbach statistical model calculations. Recent investigations have shown problems in the prediction of $ensuremath{alpha}$ widths at astrophysical energies. This impacts the reliability of abundance predictions in the upper mass range of the $p$ nuclei.Purpose: Our purpose is to measure the ${}^{127}$I($ensuremath{alpha}$,$ensuremath{gamma}$)${}^{131}$Cs and ${}^{127}$I($ensuremath{alpha}$,n)${}^{130}$Cs reaction cross sections close to the astrophysically relevant energy range to test the predictions, to derive an improved reaction rate, and to extend the database required to define an improved global optical $ensuremath{alpha}$+nucleus potential.Methods: The cross sections are derived using the activation technique and the yield of the emitted $ensuremath{gamma}$, and characteristic x-ray photons are measured using a LEPS and an HPGe detector.Results: Cross sections of the ${}^{127}$I($ensuremath{alpha}$,$ensuremath{gamma}$)${}^{131}$Cs reaction are determined for the first time, at energies $9.50ensuremath{leqslant}{E}_{mathrm{c}.mathrm{m}.}ensuremath{leqslant}15.15$ MeV. The ${}^{127}$I($ensuremath{alpha}$,n)${}^{130}$Cs reaction is studied in the range $9.62ensuremath{leqslant}{E}_{mathrm{c}.mathrm{m}.}ensuremath{leqslant}15.15$ MeV. Furthermore, the relative intensity of the 536.1-keV $ensuremath{gamma}$ transition is measured precisely; its uncertainty is reduced from 13$%$ to 4$%$. The results are then compared to Hauser-Feshbach calculations which are also used to extend the cross sections into the astrophysically relevant region and to compute the reaction rate.Conclusions: The comparison to statistical Hauser-Feshbach model calculations shows that the $ensuremath{alpha}$ width can be described well in the measured energy range using a standard, energy-independent global optical potential. The newly derived stellar reaction rates at $ensuremath{gamma}$ process temperatures for ${}^{127}$I($ensuremath{alpha}$,$ensuremath{gamma}$)${}^{131}$Cs and its reverse reactions, nevertheless, are faster by factors of 4--10 than those from previous calculations, owing to further improvements in the reaction model. The importance of the inclusion of complete level schemes in the Hauser-Feshbach calculations is illustrated by comparing the impacts of two level schemes, one of them extending to higher excitation energies but not containing all relevant levels." @default.
- W1580821384 created "2016-06-24" @default.
- W1580821384 creator A5029641450 @default.
- W1580821384 creator A5035608808 @default.
- W1580821384 creator A5038304157 @default.
- W1580821384 creator A5045422153 @default.
- W1580821384 creator A5055933959 @default.
- W1580821384 creator A5058050436 @default.
- W1580821384 creator A5071195857 @default.
- W1580821384 creator A5079368755 @default.
- W1580821384 creator A5080769390 @default.
- W1580821384 date "2012-09-04" @default.
- W1580821384 modified "2023-10-06" @default.
- W1580821384 title "Investigation of<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>α</mml:mi></mml:math>-induced reactions on<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:msup><mml:mrow /><mml:mn>127</mml:mn></mml:msup></mml:math>I for the astrophysical<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>γ</mml:mi></mml:math>process" @default.
- W1580821384 cites W1486916816 @default.
- W1580821384 cites W1527482430 @default.
- W1580821384 cites W1675255431 @default.
- W1580821384 cites W1823113382 @default.
- W1580821384 cites W1964410718 @default.
- W1580821384 cites W1971108842 @default.
- W1580821384 cites W1972276701 @default.
- W1580821384 cites W1977092596 @default.
- W1580821384 cites W1981244505 @default.
- W1580821384 cites W1982098627 @default.
- W1580821384 cites W1987958492 @default.
- W1580821384 cites W1992658563 @default.
- W1580821384 cites W2002361842 @default.
- W1580821384 cites W2008120820 @default.
- W1580821384 cites W2010607464 @default.
- W1580821384 cites W2013458172 @default.
- W1580821384 cites W2021354010 @default.
- W1580821384 cites W2041117395 @default.
- W1580821384 cites W2053371016 @default.
- W1580821384 cites W2058715378 @default.
- W1580821384 cites W2060178186 @default.
- W1580821384 cites W2063334280 @default.
- W1580821384 cites W2080290513 @default.
- W1580821384 cites W2089630383 @default.
- W1580821384 cites W2101158193 @default.
- W1580821384 cites W2107614395 @default.
- W1580821384 cites W2107680371 @default.
- W1580821384 cites W2113536251 @default.
- W1580821384 cites W2121234839 @default.
- W1580821384 cites W2148647689 @default.
- W1580821384 cites W2151726291 @default.
- W1580821384 cites W2164112158 @default.
- W1580821384 cites W2167689711 @default.
- W1580821384 cites W2172009418 @default.
- W1580821384 cites W2208766467 @default.
- W1580821384 cites W2334790604 @default.
- W1580821384 cites W3104567295 @default.
- W1580821384 cites W3104981645 @default.
- W1580821384 cites W3106242889 @default.
- W1580821384 cites W3141607172 @default.
- W1580821384 cites W4242919446 @default.
- W1580821384 doi "https://doi.org/10.1103/physrevc.86.035801" @default.
- W1580821384 hasPublicationYear "2012" @default.
- W1580821384 type Work @default.
- W1580821384 sameAs 1580821384 @default.
- W1580821384 citedByCount "20" @default.
- W1580821384 countsByYear W15808213842013 @default.
- W1580821384 countsByYear W15808213842014 @default.
- W1580821384 countsByYear W15808213842015 @default.
- W1580821384 countsByYear W15808213842016 @default.
- W1580821384 countsByYear W15808213842017 @default.
- W1580821384 countsByYear W15808213842018 @default.
- W1580821384 countsByYear W15808213842019 @default.
- W1580821384 countsByYear W15808213842022 @default.
- W1580821384 crossrefType "journal-article" @default.
- W1580821384 hasAuthorship W1580821384A5029641450 @default.
- W1580821384 hasAuthorship W1580821384A5035608808 @default.
- W1580821384 hasAuthorship W1580821384A5038304157 @default.
- W1580821384 hasAuthorship W1580821384A5045422153 @default.
- W1580821384 hasAuthorship W1580821384A5055933959 @default.
- W1580821384 hasAuthorship W1580821384A5058050436 @default.
- W1580821384 hasAuthorship W1580821384A5071195857 @default.
- W1580821384 hasAuthorship W1580821384A5079368755 @default.
- W1580821384 hasAuthorship W1580821384A5080769390 @default.
- W1580821384 hasBestOaLocation W15808213842 @default.
- W1580821384 hasConcept C121332964 @default.
- W1580821384 hasConcept C127592171 @default.
- W1580821384 hasConcept C184779094 @default.
- W1580821384 hasConcept C185544564 @default.
- W1580821384 hasConcept C186370098 @default.
- W1580821384 hasConcept C206191943 @default.
- W1580821384 hasConcept C44870925 @default.
- W1580821384 hasConcept C54516573 @default.
- W1580821384 hasConcept C62520636 @default.
- W1580821384 hasConceptScore W1580821384C121332964 @default.
- W1580821384 hasConceptScore W1580821384C127592171 @default.
- W1580821384 hasConceptScore W1580821384C184779094 @default.
- W1580821384 hasConceptScore W1580821384C185544564 @default.
- W1580821384 hasConceptScore W1580821384C186370098 @default.
- W1580821384 hasConceptScore W1580821384C206191943 @default.
- W1580821384 hasConceptScore W1580821384C44870925 @default.
- W1580821384 hasConceptScore W1580821384C54516573 @default.
- W1580821384 hasConceptScore W1580821384C62520636 @default.
- W1580821384 hasIssue "3" @default.
- W1580821384 hasLocation W15808213841 @default.
- W1580821384 hasLocation W15808213842 @default.