Matches in SemOpenAlex for { <https://semopenalex.org/work/W1581487435> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W1581487435 startingPage "6342" @default.
- W1581487435 abstract "Mantle convection in terrestrial planets is strongly influenced by the temperature dependence of its viscosity. Considering this property, the mantle convection is basically divided into three different regimes depending on the viscosity contrast: stagnant lid, sluggish and mobile lid regime [1]. In the first regime the mantle is divided into two parts an active part which is convecting and another one on top which is immobile. In the last two regimes the surface material can move and is incorporated into the mantle convection. The temperature dependence of the mantle viscosity can be modeled using the so called Arrhenius Law. In the Arrhenius formulation the temperature dependence of the viscosity for a silicate mantle is given by the activation energy. Using realistic values for the activation energy in the Arrhenius formulation will result in large viscosity contrasts (∼ 10) which cannot be handled very well by the numeric. Therefore, an approximation of the viscosity is commonly used to model the mantle convection, i.e., the Frank-Kamenetskii approximation. This approximation linearises the Arrhenius law, suggesting a viscosity which is many orders of magnitude smaller at the surface. Although the approximation has been shown to represent only the stagnant lid regime correctly, it is widely used in the literature also for the other regimes. We present a comparison of the mantle convection for stagnant lid cases using either the Arrhenius law or the Frank-Kamenetskii approximation with a 3D spherical code, GAIA [2,3].The results confirm earlier studies that the Frank-Kamenetskii approximation can be used in the stagnant lid regime for a fixed Rayleigh number and a sufficiently thick stagnant lid. However, several problems arise when using this approximation in numerical simulations for a cooling mantle or for convection with a thin stagnant lid. A systematic study is presented highlighting the differences in various control parameters of mantle convection, e.g. degree of convection, Nusselt number, and stagnant lid thickness." @default.
- W1581487435 created "2016-06-24" @default.
- W1581487435 creator A5015066564 @default.
- W1581487435 creator A5060451976 @default.
- W1581487435 creator A5087674032 @default.
- W1581487435 date "2010-05-01" @default.
- W1581487435 modified "2023-09-24" @default.
- W1581487435 title "Mantle Convection in a Spherical Shell: The problems of using Frank-Kamenetskii Approximation for the viscosity law" @default.
- W1581487435 hasPublicationYear "2010" @default.
- W1581487435 type Work @default.
- W1581487435 sameAs 1581487435 @default.
- W1581487435 citedByCount "1" @default.
- W1581487435 crossrefType "journal-article" @default.
- W1581487435 hasAuthorship W1581487435A5015066564 @default.
- W1581487435 hasAuthorship W1581487435A5060451976 @default.
- W1581487435 hasAuthorship W1581487435A5087674032 @default.
- W1581487435 hasConcept C10899652 @default.
- W1581487435 hasConcept C121332964 @default.
- W1581487435 hasConcept C127172972 @default.
- W1581487435 hasConcept C127313418 @default.
- W1581487435 hasConcept C147789679 @default.
- W1581487435 hasConcept C151730666 @default.
- W1581487435 hasConcept C16942324 @default.
- W1581487435 hasConcept C185592680 @default.
- W1581487435 hasConcept C190799397 @default.
- W1581487435 hasConcept C67236022 @default.
- W1581487435 hasConcept C77928131 @default.
- W1581487435 hasConcept C8058405 @default.
- W1581487435 hasConcept C86183883 @default.
- W1581487435 hasConcept C95121573 @default.
- W1581487435 hasConcept C97355855 @default.
- W1581487435 hasConceptScore W1581487435C10899652 @default.
- W1581487435 hasConceptScore W1581487435C121332964 @default.
- W1581487435 hasConceptScore W1581487435C127172972 @default.
- W1581487435 hasConceptScore W1581487435C127313418 @default.
- W1581487435 hasConceptScore W1581487435C147789679 @default.
- W1581487435 hasConceptScore W1581487435C151730666 @default.
- W1581487435 hasConceptScore W1581487435C16942324 @default.
- W1581487435 hasConceptScore W1581487435C185592680 @default.
- W1581487435 hasConceptScore W1581487435C190799397 @default.
- W1581487435 hasConceptScore W1581487435C67236022 @default.
- W1581487435 hasConceptScore W1581487435C77928131 @default.
- W1581487435 hasConceptScore W1581487435C8058405 @default.
- W1581487435 hasConceptScore W1581487435C86183883 @default.
- W1581487435 hasConceptScore W1581487435C95121573 @default.
- W1581487435 hasConceptScore W1581487435C97355855 @default.
- W1581487435 hasLocation W15814874351 @default.
- W1581487435 hasOpenAccess W1581487435 @default.
- W1581487435 hasPrimaryLocation W15814874351 @default.
- W1581487435 hasRelatedWork W121037375 @default.
- W1581487435 hasRelatedWork W127315517 @default.
- W1581487435 hasRelatedWork W1975762384 @default.
- W1581487435 hasRelatedWork W1979561373 @default.
- W1581487435 hasRelatedWork W2007317100 @default.
- W1581487435 hasRelatedWork W2017975986 @default.
- W1581487435 hasRelatedWork W2028230015 @default.
- W1581487435 hasRelatedWork W2030679869 @default.
- W1581487435 hasRelatedWork W2039220741 @default.
- W1581487435 hasRelatedWork W2070295868 @default.
- W1581487435 hasRelatedWork W2084212500 @default.
- W1581487435 hasRelatedWork W2165117445 @default.
- W1581487435 hasRelatedWork W2988537432 @default.
- W1581487435 hasRelatedWork W2989681441 @default.
- W1581487435 hasRelatedWork W3042024339 @default.
- W1581487435 hasRelatedWork W3127617843 @default.
- W1581487435 hasRelatedWork W3156009900 @default.
- W1581487435 hasRelatedWork W3181207310 @default.
- W1581487435 hasRelatedWork W373094528 @default.
- W1581487435 hasRelatedWork W72174159 @default.
- W1581487435 isParatext "false" @default.
- W1581487435 isRetracted "false" @default.
- W1581487435 magId "1581487435" @default.
- W1581487435 workType "article" @default.