Matches in SemOpenAlex for { <https://semopenalex.org/work/W1581567161> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1581567161 abstract "Genetic programming (or GP) is a random search technique that emerged in the late 1980s and early 1990s. A formal description of the method was introduced in Koza (1992). GP applies to many optimization areas. One of them is modeling time series and using those models in forecasting. Unlike other modeling techniques, GP is a computer program that 'searches' for a specification that replicates the dynamic behavior of observed series. To use GP, one provides operators (such as +, -, *, ?, exp, log, sin, cos, ... etc.) and identifies as many variables thought best to reproduce the dependent variable's dynamics. The program then randomly assembles equations with different specifications by combining some of the provided variables with operators and identifies that specification with the minimum sum of squared errors (or SSE). This process is an iterative evolution of successive generations consisting of thousands of the assembled equations where only the fittest within a generation survive to breed better equations also using random combinations until the best one is found. Clearly from this simple description, the method is based on heuristics and has no theoretical foundation. However, resulting final equations seem to produce reasonably accurate forecasts that compare favorably to forecasts humanly conceived specifications produce. With encouraging results difficult to overlook or ignore, it is important to investigate GP as a forecasting methodology. This paper attempts to evaluate forecasts genetically evolved models (or GEMs) produce for experimental data as well as real world time series.The organization of this paper inot four Sections. Section 1 contains an overview of GEMs. The reader will find lucid explanation of how models are evolved using genetic methodology as well as features found to characterize GEMs as a modeling technique. Section 2 contains descriptions of simulated and real world data and their respective fittest identified GEMs. The MSE and a new alpha-statistic are presented to compare models' performances. Simulated data were chosen to represent processes with different behavioral complexities including linear, linear-stochastic, nonlinear, nonlinear chaotic, and nonlinear-stochastic. Real world data consist of two time series popular in analytical statistics: Canadian lynx data and sunspot numbers. Predictions of historic values of each series (used in generating the fittest model) are also presented there. Forecasts and their evaluations are in Section 3. For each series, single- and multi-step forecasts are evaluated according to the mean squared error, normalized mean squared error, and alpha- statistic. A few concluding remarks are in the discussion in Section 4." @default.
- W1581567161 created "2016-06-24" @default.
- W1581567161 creator A5031655321 @default.
- W1581567161 date "2000-07-05" @default.
- W1581567161 modified "2023-09-27" @default.
- W1581567161 title "EVALUATION OF FORECASTS PRODUCED BY GENETICALLY EVOLVED MODELS" @default.
- W1581567161 cites W1500989646 @default.
- W1581567161 cites W151009779 @default.
- W1581567161 cites W1545341178 @default.
- W1581567161 cites W1569757501 @default.
- W1581567161 cites W1576818901 @default.
- W1581567161 cites W1633662039 @default.
- W1581567161 cites W1832139143 @default.
- W1581567161 cites W1962764919 @default.
- W1581567161 cites W1977522998 @default.
- W1581567161 cites W1995930498 @default.
- W1581567161 cites W2019306876 @default.
- W1581567161 cites W2023655396 @default.
- W1581567161 cites W2026561680 @default.
- W1581567161 cites W2058130851 @default.
- W1581567161 cites W2060050130 @default.
- W1581567161 cites W2070094080 @default.
- W1581567161 cites W2072208595 @default.
- W1581567161 cites W2087677959 @default.
- W1581567161 cites W2094576199 @default.
- W1581567161 cites W2102892532 @default.
- W1581567161 cites W2118234389 @default.
- W1581567161 cites W2125566231 @default.
- W1581567161 cites W2148734070 @default.
- W1581567161 cites W2463433918 @default.
- W1581567161 cites W2912046818 @default.
- W1581567161 hasPublicationYear "2000" @default.
- W1581567161 type Work @default.
- W1581567161 sameAs 1581567161 @default.
- W1581567161 citedByCount "0" @default.
- W1581567161 crossrefType "posted-content" @default.
- W1581567161 hasAuthorship W1581567161A5031655321 @default.
- W1581567161 hasConcept C110332635 @default.
- W1581567161 hasConcept C111472728 @default.
- W1581567161 hasConcept C111919701 @default.
- W1581567161 hasConcept C119857082 @default.
- W1581567161 hasConcept C127705205 @default.
- W1581567161 hasConcept C138885662 @default.
- W1581567161 hasConcept C143724316 @default.
- W1581567161 hasConcept C151730666 @default.
- W1581567161 hasConcept C199360897 @default.
- W1581567161 hasConcept C2780586882 @default.
- W1581567161 hasConcept C41008148 @default.
- W1581567161 hasConcept C86803240 @default.
- W1581567161 hasConcept C98045186 @default.
- W1581567161 hasConceptScore W1581567161C110332635 @default.
- W1581567161 hasConceptScore W1581567161C111472728 @default.
- W1581567161 hasConceptScore W1581567161C111919701 @default.
- W1581567161 hasConceptScore W1581567161C119857082 @default.
- W1581567161 hasConceptScore W1581567161C127705205 @default.
- W1581567161 hasConceptScore W1581567161C138885662 @default.
- W1581567161 hasConceptScore W1581567161C143724316 @default.
- W1581567161 hasConceptScore W1581567161C151730666 @default.
- W1581567161 hasConceptScore W1581567161C199360897 @default.
- W1581567161 hasConceptScore W1581567161C2780586882 @default.
- W1581567161 hasConceptScore W1581567161C41008148 @default.
- W1581567161 hasConceptScore W1581567161C86803240 @default.
- W1581567161 hasConceptScore W1581567161C98045186 @default.
- W1581567161 hasLocation W15815671611 @default.
- W1581567161 hasOpenAccess W1581567161 @default.
- W1581567161 hasPrimaryLocation W15815671611 @default.
- W1581567161 hasRelatedWork W1502097978 @default.
- W1581567161 hasRelatedWork W1547068196 @default.
- W1581567161 hasRelatedWork W156601555 @default.
- W1581567161 hasRelatedWork W1584172119 @default.
- W1581567161 hasRelatedWork W186108097 @default.
- W1581567161 hasRelatedWork W1965842920 @default.
- W1581567161 hasRelatedWork W2016006053 @default.
- W1581567161 hasRelatedWork W2066046723 @default.
- W1581567161 hasRelatedWork W2080995730 @default.
- W1581567161 hasRelatedWork W2096510936 @default.
- W1581567161 hasRelatedWork W2118088123 @default.
- W1581567161 hasRelatedWork W2171135275 @default.
- W1581567161 hasRelatedWork W2178272562 @default.
- W1581567161 hasRelatedWork W2189033976 @default.
- W1581567161 hasRelatedWork W2380232964 @default.
- W1581567161 hasRelatedWork W3044225397 @default.
- W1581567161 hasRelatedWork W3125240048 @default.
- W1581567161 hasRelatedWork W3199416290 @default.
- W1581567161 hasRelatedWork W64680202 @default.
- W1581567161 hasRelatedWork W2120505667 @default.
- W1581567161 isParatext "false" @default.
- W1581567161 isRetracted "false" @default.
- W1581567161 magId "1581567161" @default.
- W1581567161 workType "article" @default.