Matches in SemOpenAlex for { <https://semopenalex.org/work/W1581909192> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W1581909192 endingPage "186" @default.
- W1581909192 startingPage "157" @default.
- W1581909192 abstract "This chapter examines the challenges and opportunities of Multimedia Information Retrieval and corresponding search engine applications. Computer technology has changed our access to information tremendously: We used to search authors or titles (which we had to know) in library cards in order to locate relevant books; now we can issue keyword searches within the full text of whole book repositories in order to identify authors, titles and locations of relevant books. What about the corresponding challenge of finding multimedia by fragments, examples and excerpts? Rather than asking for a music piece by artist and title, can we hum its tune to find it? Can doctors submit scans of a patient to identify medically similar images of diagnosed cases in a database? Can your mobile phone take a picture of a statue and tell you about its artist and significance via a service that it sends this picture to? In an attempt to answer some of these questions we get to know basic concepts of multimedia resource discovery technologies for a number of different query and document types: piggy-back text search, i.e., reducing the multimedia to pseudo text documents; automated annotation of visual components; content-based retrieval where the query is an image; and fingerprinting to match near duplicates. Some of the research challenges are given by the semantic gap between the simple pixel properties computers can readily index and high-level human concepts; related to this is an inherent technological limitation of automated annotation of images from pixels alone. Other challenges are given by polysemy, i.e., the many meanings and interpretations that are inherent in visual material and the corresponding wide range of a user’s information need. This chapter demonstrates how these challenges can be tackled by automated processing and machine learning and by utilising the skills of the user, for example through browsing or through a process that is called relevance feedback, thus putting the user at centre stage. The latter is made easier by “added value” technologies, exemplified here by summaries of complex multimedia objects such as TV news, information visualisation techniques for document clusters, visual search by example, and methods to create browsable structures within the collection." @default.
- W1581909192 created "2016-06-24" @default.
- W1581909192 creator A5055679306 @default.
- W1581909192 date "2011-01-01" @default.
- W1581909192 modified "2023-10-18" @default.
- W1581909192 title "Multimedia Resource Discovery" @default.
- W1581909192 cites W1484654248 @default.
- W1581909192 cites W1488584544 @default.
- W1581909192 cites W1495177430 @default.
- W1581909192 cites W1517227471 @default.
- W1581909192 cites W1599860700 @default.
- W1581909192 cites W1607983314 @default.
- W1581909192 cites W1761860472 @default.
- W1581909192 cites W1877469910 @default.
- W1581909192 cites W1960041389 @default.
- W1581909192 cites W1970787123 @default.
- W1581909192 cites W1976748469 @default.
- W1581909192 cites W1980280334 @default.
- W1581909192 cites W2025823852 @default.
- W1581909192 cites W2033778886 @default.
- W1581909192 cites W2039561007 @default.
- W1581909192 cites W2047411082 @default.
- W1581909192 cites W2092781592 @default.
- W1581909192 cites W2096077837 @default.
- W1581909192 cites W2096290331 @default.
- W1581909192 cites W2111993661 @default.
- W1581909192 cites W2112090702 @default.
- W1581909192 cites W2120701424 @default.
- W1581909192 cites W2120942581 @default.
- W1581909192 cites W2121422385 @default.
- W1581909192 cites W2129287653 @default.
- W1581909192 cites W2133824856 @default.
- W1581909192 cites W2134312057 @default.
- W1581909192 cites W2141282920 @default.
- W1581909192 cites W2146042450 @default.
- W1581909192 cites W2147069236 @default.
- W1581909192 cites W2149095746 @default.
- W1581909192 cites W2150036671 @default.
- W1581909192 cites W2154559384 @default.
- W1581909192 cites W2155099190 @default.
- W1581909192 cites W3140203871 @default.
- W1581909192 cites W4205508867 @default.
- W1581909192 cites W4237434670 @default.
- W1581909192 doi "https://doi.org/10.1007/978-3-642-20946-8_7" @default.
- W1581909192 hasPublicationYear "2011" @default.
- W1581909192 type Work @default.
- W1581909192 sameAs 1581909192 @default.
- W1581909192 citedByCount "0" @default.
- W1581909192 crossrefType "book-chapter" @default.
- W1581909192 hasAuthorship W1581909192A5055679306 @default.
- W1581909192 hasBestOaLocation W15819091922 @default.
- W1581909192 hasConcept C115961682 @default.
- W1581909192 hasConcept C136264566 @default.
- W1581909192 hasConcept C136764020 @default.
- W1581909192 hasConcept C154945302 @default.
- W1581909192 hasConcept C162324750 @default.
- W1581909192 hasConcept C1667742 @default.
- W1581909192 hasConcept C206345919 @default.
- W1581909192 hasConcept C23123220 @default.
- W1581909192 hasConcept C2776321320 @default.
- W1581909192 hasConcept C2777382242 @default.
- W1581909192 hasConcept C2780378061 @default.
- W1581909192 hasConcept C31258907 @default.
- W1581909192 hasConcept C41008148 @default.
- W1581909192 hasConcept C49774154 @default.
- W1581909192 hasConceptScore W1581909192C115961682 @default.
- W1581909192 hasConceptScore W1581909192C136264566 @default.
- W1581909192 hasConceptScore W1581909192C136764020 @default.
- W1581909192 hasConceptScore W1581909192C154945302 @default.
- W1581909192 hasConceptScore W1581909192C162324750 @default.
- W1581909192 hasConceptScore W1581909192C1667742 @default.
- W1581909192 hasConceptScore W1581909192C206345919 @default.
- W1581909192 hasConceptScore W1581909192C23123220 @default.
- W1581909192 hasConceptScore W1581909192C2776321320 @default.
- W1581909192 hasConceptScore W1581909192C2777382242 @default.
- W1581909192 hasConceptScore W1581909192C2780378061 @default.
- W1581909192 hasConceptScore W1581909192C31258907 @default.
- W1581909192 hasConceptScore W1581909192C41008148 @default.
- W1581909192 hasConceptScore W1581909192C49774154 @default.
- W1581909192 hasLocation W15819091921 @default.
- W1581909192 hasLocation W15819091922 @default.
- W1581909192 hasLocation W15819091923 @default.
- W1581909192 hasOpenAccess W1581909192 @default.
- W1581909192 hasPrimaryLocation W15819091921 @default.
- W1581909192 hasRelatedWork W1926504679 @default.
- W1581909192 hasRelatedWork W2041658416 @default.
- W1581909192 hasRelatedWork W2049973050 @default.
- W1581909192 hasRelatedWork W2077853975 @default.
- W1581909192 hasRelatedWork W2187223183 @default.
- W1581909192 hasRelatedWork W2368880287 @default.
- W1581909192 hasRelatedWork W3097853387 @default.
- W1581909192 hasRelatedWork W45217788 @default.
- W1581909192 hasRelatedWork W4866712 @default.
- W1581909192 hasRelatedWork W79946180 @default.
- W1581909192 isParatext "false" @default.
- W1581909192 isRetracted "false" @default.
- W1581909192 magId "1581909192" @default.
- W1581909192 workType "book-chapter" @default.