Matches in SemOpenAlex for { <https://semopenalex.org/work/W15828319> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W15828319 endingPage "2883" @default.
- W15828319 startingPage "2871" @default.
- W15828319 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a discrete group. Following Linnell and Schick one can define a continuous ring <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c left-parenthesis normal upper Gamma right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>c(Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> associated with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. They proved that if the Atiyah Conjecture holds for a torsion-free group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c left-parenthesis normal upper Gamma right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>c(Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a skew field. Also, if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has torsion and the Strong Atiyah Conjecture holds for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c left-parenthesis normal upper Gamma right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>c(Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a matrix ring over a skew field. The simplest example when the Strong Atiyah Conjecture fails is the lamplighter group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma equals double-struck upper Z 2 wreath-product double-struck upper Z> <mml:semantics> <mml:mrow> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>≀<!-- ≀ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>Gamma =mathbb {Z}_2wr mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is known that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper C left-parenthesis double-struck upper Z 2 wreath-product double-struck upper Z right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>C</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>≀<!-- ≀ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {C}(mathbb {Z}_2wr mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> does not even have a classical ring of quotients. Our main result is that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is amenable, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=c left-parenthesis double-struck upper Z 2 wreath-product upper H right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>≀<!-- ≀ --></mml:mo> <mml:mi>H</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>c(mathbb {Z}_2wr H)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is isomorphic to a continuous ring constructed by John von Neumann in the 1930s." @default.
- W15828319 created "2016-06-24" @default.
- W15828319 creator A5000595324 @default.
- W15828319 date "2016-03-22" @default.
- W15828319 modified "2023-09-27" @default.
- W15828319 title "Lamplighter groups and von Neumann‘s continuous regular ring" @default.
- W15828319 cites W1964495682 @default.
- W15828319 cites W1995381632 @default.
- W15828319 cites W2005701412 @default.
- W15828319 cites W2012887473 @default.
- W15828319 cites W2025744731 @default.
- W15828319 cites W2040997822 @default.
- W15828319 cites W2051016240 @default.
- W15828319 cites W2074366510 @default.
- W15828319 cites W4240164025 @default.
- W15828319 cites W879200450 @default.
- W15828319 doi "https://doi.org/10.1090/proc/13066" @default.
- W15828319 hasPublicationYear "2016" @default.
- W15828319 type Work @default.
- W15828319 sameAs 15828319 @default.
- W15828319 citedByCount "11" @default.
- W15828319 countsByYear W158283192016 @default.
- W15828319 countsByYear W158283192019 @default.
- W15828319 countsByYear W158283192020 @default.
- W15828319 countsByYear W158283192021 @default.
- W15828319 countsByYear W158283192022 @default.
- W15828319 countsByYear W158283192023 @default.
- W15828319 crossrefType "journal-article" @default.
- W15828319 hasAuthorship W15828319A5000595324 @default.
- W15828319 hasBestOaLocation W158283191 @default.
- W15828319 hasConcept C11413529 @default.
- W15828319 hasConcept C118615104 @default.
- W15828319 hasConcept C154945302 @default.
- W15828319 hasConcept C18903297 @default.
- W15828319 hasConcept C2776321320 @default.
- W15828319 hasConcept C2777299769 @default.
- W15828319 hasConcept C2780990831 @default.
- W15828319 hasConcept C33923547 @default.
- W15828319 hasConcept C41008148 @default.
- W15828319 hasConcept C86803240 @default.
- W15828319 hasConceptScore W15828319C11413529 @default.
- W15828319 hasConceptScore W15828319C118615104 @default.
- W15828319 hasConceptScore W15828319C154945302 @default.
- W15828319 hasConceptScore W15828319C18903297 @default.
- W15828319 hasConceptScore W15828319C2776321320 @default.
- W15828319 hasConceptScore W15828319C2777299769 @default.
- W15828319 hasConceptScore W15828319C2780990831 @default.
- W15828319 hasConceptScore W15828319C33923547 @default.
- W15828319 hasConceptScore W15828319C41008148 @default.
- W15828319 hasConceptScore W15828319C86803240 @default.
- W15828319 hasIssue "7" @default.
- W15828319 hasLocation W158283191 @default.
- W15828319 hasLocation W158283192 @default.
- W15828319 hasLocation W158283193 @default.
- W15828319 hasOpenAccess W15828319 @default.
- W15828319 hasPrimaryLocation W158283191 @default.
- W15828319 hasRelatedWork W151193258 @default.
- W15828319 hasRelatedWork W1529400504 @default.
- W15828319 hasRelatedWork W1892467659 @default.
- W15828319 hasRelatedWork W2022017350 @default.
- W15828319 hasRelatedWork W2046365279 @default.
- W15828319 hasRelatedWork W2060857373 @default.
- W15828319 hasRelatedWork W2335125628 @default.
- W15828319 hasRelatedWork W2463560742 @default.
- W15828319 hasRelatedWork W2962690600 @default.
- W15828319 hasRelatedWork W3105807034 @default.
- W15828319 hasVolume "144" @default.
- W15828319 isParatext "false" @default.
- W15828319 isRetracted "false" @default.
- W15828319 magId "15828319" @default.
- W15828319 workType "article" @default.