Matches in SemOpenAlex for { <https://semopenalex.org/work/W15834992> ?p ?o ?g. }
- W15834992 endingPage "1973" @default.
- W15834992 startingPage "1966" @default.
- W15834992 abstract "In the field of statistical data mining, the Expectation Maximization (EM) algorithm is one of the most popular methods used for solving parameter estimation problems in the maximum likelihood (ML) framework. Compared to traditional methods such as steepest descent, conjugate gradient, or Newton-Raphson, which are often too complicated to use in solving these problems, EM has become a popular method because it takes advantage of some problem specific properties (Xu et al., 1996). The EM algorithm converges to the local maximum of the log-likelihood function under very general conditions (Demspter et al., 1977; Redner et al., 1984). Efficiently maximizing the likelihood by augmenting it with latent variables and guarantees of convergence are some of the important hallmarks of the EM algorithm. EM based methods have been applied successfully to solve a wide range of problems that arise in fields of pattern recognition, clustering, information retrieval, computer vision, bioinformatics (Reddy et al., 2006; Carson et al., 2002; Nigam et al., 2000), etc. Given an initial set of parameters, the EM algorithm can be implemented to compute parameter estimates that locally maximize the likelihood function of the data. In spite of its strong theoretical foundations, its wide applicability and important usage in solving some real-world problems, the standard EM algorithm suffers from certain fundamental drawbacks when used in practical settings. Some of the main difficulties of using the EM algorithm on a general log-likelihood surface are as follows (Reddy et al., 2008): • EM algorithm for mixture modeling converges to a local maximum of the log-likelihood function very quickly. • There are many other promising local optimal solutions in the close vicinity of the solutions obtained from the methods that provide good initial guesses of the solution. • Model selection criterion usually assumes that the global optimal solution of the log-likelihood function can be obtained. However, achieving this is computationally intractable. • Some regions in the search space do not contain any promising solutions. The promising and nonpromising regions co-exist and it becomes challenging to avoid wasting computational resources to search in non-promising regions. Of all the concerns mentioned above, the fact that most of the local maxima are not distributed uniformly makes it important to develop algorithms that not only help in avoiding some inefficient search over the lowlikelihood regions but also emphasize the importance of exploring promising subspaces more thoroughly (Zhang et al, 2004). This subspace search will also be useful for making the solution less sensitive to the initial set of parameters. In this chapter, we will discuss the theoretical aspects of the EM algorithm and demonstrate its use in obtaining the optimal estimates of the parameters for mixture models. We will also discuss some of the practical concerns of using the EM algorithm and present a few results on the performance of various algorithms that try to address these problems." @default.
- W15834992 created "2016-06-24" @default.
- W15834992 creator A5085720726 @default.
- W15834992 creator A5091424272 @default.
- W15834992 date "2011-05-24" @default.
- W15834992 modified "2023-10-12" @default.
- W15834992 title "Theory and Practice of Expectation Maximization (EM) Algorithm" @default.
- W15834992 cites W1981367467 @default.
- W15834992 cites W2007463795 @default.
- W15834992 cites W2015245929 @default.
- W15834992 cites W2069416420 @default.
- W15834992 cites W2097089247 @default.
- W15834992 cites W2124369546 @default.
- W15834992 cites W2133435228 @default.
- W15834992 cites W2134199473 @default.
- W15834992 cites W2135705692 @default.
- W15834992 cites W2140136927 @default.
- W15834992 cites W2488678869 @default.
- W15834992 cites W4249875616 @default.
- W15834992 doi "https://doi.org/10.4018/978-1-60566-010-3.ch300" @default.
- W15834992 hasPublicationYear "2011" @default.
- W15834992 type Work @default.
- W15834992 sameAs 15834992 @default.
- W15834992 citedByCount "0" @default.
- W15834992 crossrefType "book-chapter" @default.
- W15834992 hasAuthorship W15834992A5085720726 @default.
- W15834992 hasAuthorship W15834992A5091424272 @default.
- W15834992 hasConcept C105795698 @default.
- W15834992 hasConcept C11413529 @default.
- W15834992 hasConcept C126255220 @default.
- W15834992 hasConcept C14036430 @default.
- W15834992 hasConcept C153258448 @default.
- W15834992 hasConcept C154945302 @default.
- W15834992 hasConcept C159985019 @default.
- W15834992 hasConcept C162324750 @default.
- W15834992 hasConcept C167928553 @default.
- W15834992 hasConcept C177264268 @default.
- W15834992 hasConcept C182081679 @default.
- W15834992 hasConcept C192562407 @default.
- W15834992 hasConcept C199360897 @default.
- W15834992 hasConcept C202444582 @default.
- W15834992 hasConcept C204323151 @default.
- W15834992 hasConcept C2776330181 @default.
- W15834992 hasConcept C2777303404 @default.
- W15834992 hasConcept C33923547 @default.
- W15834992 hasConcept C41008148 @default.
- W15834992 hasConcept C49781872 @default.
- W15834992 hasConcept C50522688 @default.
- W15834992 hasConcept C50644808 @default.
- W15834992 hasConcept C73555534 @default.
- W15834992 hasConcept C78458016 @default.
- W15834992 hasConcept C81184566 @default.
- W15834992 hasConcept C86803240 @default.
- W15834992 hasConcept C89106044 @default.
- W15834992 hasConcept C9652623 @default.
- W15834992 hasConceptScore W15834992C105795698 @default.
- W15834992 hasConceptScore W15834992C11413529 @default.
- W15834992 hasConceptScore W15834992C126255220 @default.
- W15834992 hasConceptScore W15834992C14036430 @default.
- W15834992 hasConceptScore W15834992C153258448 @default.
- W15834992 hasConceptScore W15834992C154945302 @default.
- W15834992 hasConceptScore W15834992C159985019 @default.
- W15834992 hasConceptScore W15834992C162324750 @default.
- W15834992 hasConceptScore W15834992C167928553 @default.
- W15834992 hasConceptScore W15834992C177264268 @default.
- W15834992 hasConceptScore W15834992C182081679 @default.
- W15834992 hasConceptScore W15834992C192562407 @default.
- W15834992 hasConceptScore W15834992C199360897 @default.
- W15834992 hasConceptScore W15834992C202444582 @default.
- W15834992 hasConceptScore W15834992C204323151 @default.
- W15834992 hasConceptScore W15834992C2776330181 @default.
- W15834992 hasConceptScore W15834992C2777303404 @default.
- W15834992 hasConceptScore W15834992C33923547 @default.
- W15834992 hasConceptScore W15834992C41008148 @default.
- W15834992 hasConceptScore W15834992C49781872 @default.
- W15834992 hasConceptScore W15834992C50522688 @default.
- W15834992 hasConceptScore W15834992C50644808 @default.
- W15834992 hasConceptScore W15834992C73555534 @default.
- W15834992 hasConceptScore W15834992C78458016 @default.
- W15834992 hasConceptScore W15834992C81184566 @default.
- W15834992 hasConceptScore W15834992C86803240 @default.
- W15834992 hasConceptScore W15834992C89106044 @default.
- W15834992 hasConceptScore W15834992C9652623 @default.
- W15834992 hasLocation W158349921 @default.
- W15834992 hasOpenAccess W15834992 @default.
- W15834992 hasPrimaryLocation W158349921 @default.
- W15834992 hasRelatedWork W115678641 @default.
- W15834992 hasRelatedWork W1503858565 @default.
- W15834992 hasRelatedWork W1555092640 @default.
- W15834992 hasRelatedWork W1571522380 @default.
- W15834992 hasRelatedWork W1686266550 @default.
- W15834992 hasRelatedWork W2014364259 @default.
- W15834992 hasRelatedWork W2015587384 @default.
- W15834992 hasRelatedWork W2029811140 @default.
- W15834992 hasRelatedWork W2041701373 @default.
- W15834992 hasRelatedWork W2161064850 @default.
- W15834992 hasRelatedWork W2734811649 @default.
- W15834992 hasRelatedWork W2796406562 @default.