Matches in SemOpenAlex for { <https://semopenalex.org/work/W1583896130> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1583896130 endingPage "1094" @default.
- W1583896130 startingPage "1093" @default.
- W1583896130 abstract "In this paper we consider two novel kernel machine based feature extraction algorithms in a regression settings. The first method is derived based on the principles underlying the recently introduced Maximum Margin Discimination Analysis (MMDA) algorithm. However, here it is shown that the orthogonalization principle employed by the original MMDA algorithm can be motivated using the well-known ambiguity decomposition, thus providing a firm ground for the good performance of the algorithm. The second algorithm combines kernel machines with average derivative estimation and is derived from the assumption that the true regressor function depends only on a subspace of the original input space. The proposed algorithms are evaluated in preliminary experiments conducted with artificial and real datasets." @default.
- W1583896130 created "2016-06-24" @default.
- W1583896130 creator A5020008023 @default.
- W1583896130 creator A5061288526 @default.
- W1583896130 creator A5069856068 @default.
- W1583896130 date "2004-08-22" @default.
- W1583896130 modified "2023-10-05" @default.
- W1583896130 title "Kernel machine based feature extraction algorithms for regression problems" @default.
- W1583896130 cites W1568892534 @default.
- W1583896130 cites W2128073546 @default.
- W1583896130 cites W2156909104 @default.
- W1583896130 cites W2157801062 @default.
- W1583896130 cites W2163490846 @default.
- W1583896130 hasPublicationYear "2004" @default.
- W1583896130 type Work @default.
- W1583896130 sameAs 1583896130 @default.
- W1583896130 citedByCount "1" @default.
- W1583896130 crossrefType "proceedings-article" @default.
- W1583896130 hasAuthorship W1583896130A5020008023 @default.
- W1583896130 hasAuthorship W1583896130A5061288526 @default.
- W1583896130 hasAuthorship W1583896130A5069856068 @default.
- W1583896130 hasConcept C11413529 @default.
- W1583896130 hasConcept C114614502 @default.
- W1583896130 hasConcept C119857082 @default.
- W1583896130 hasConcept C122280245 @default.
- W1583896130 hasConcept C12267149 @default.
- W1583896130 hasConcept C153180895 @default.
- W1583896130 hasConcept C154945302 @default.
- W1583896130 hasConcept C160446489 @default.
- W1583896130 hasConcept C195699287 @default.
- W1583896130 hasConcept C32834561 @default.
- W1583896130 hasConcept C33923547 @default.
- W1583896130 hasConcept C41008148 @default.
- W1583896130 hasConcept C47559304 @default.
- W1583896130 hasConcept C74193536 @default.
- W1583896130 hasConcept C75866337 @default.
- W1583896130 hasConcept C774472 @default.
- W1583896130 hasConceptScore W1583896130C11413529 @default.
- W1583896130 hasConceptScore W1583896130C114614502 @default.
- W1583896130 hasConceptScore W1583896130C119857082 @default.
- W1583896130 hasConceptScore W1583896130C122280245 @default.
- W1583896130 hasConceptScore W1583896130C12267149 @default.
- W1583896130 hasConceptScore W1583896130C153180895 @default.
- W1583896130 hasConceptScore W1583896130C154945302 @default.
- W1583896130 hasConceptScore W1583896130C160446489 @default.
- W1583896130 hasConceptScore W1583896130C195699287 @default.
- W1583896130 hasConceptScore W1583896130C32834561 @default.
- W1583896130 hasConceptScore W1583896130C33923547 @default.
- W1583896130 hasConceptScore W1583896130C41008148 @default.
- W1583896130 hasConceptScore W1583896130C47559304 @default.
- W1583896130 hasConceptScore W1583896130C74193536 @default.
- W1583896130 hasConceptScore W1583896130C75866337 @default.
- W1583896130 hasConceptScore W1583896130C774472 @default.
- W1583896130 hasLocation W15838961301 @default.
- W1583896130 hasOpenAccess W1583896130 @default.
- W1583896130 hasPrimaryLocation W15838961301 @default.
- W1583896130 hasRelatedWork W1581520584 @default.
- W1583896130 hasRelatedWork W1787843412 @default.
- W1583896130 hasRelatedWork W1979840843 @default.
- W1583896130 hasRelatedWork W1987810722 @default.
- W1583896130 hasRelatedWork W1993658663 @default.
- W1583896130 hasRelatedWork W2021671037 @default.
- W1583896130 hasRelatedWork W2053070942 @default.
- W1583896130 hasRelatedWork W2061994522 @default.
- W1583896130 hasRelatedWork W2067772694 @default.
- W1583896130 hasRelatedWork W2098957565 @default.
- W1583896130 hasRelatedWork W2109425299 @default.
- W1583896130 hasRelatedWork W2168026608 @default.
- W1583896130 hasRelatedWork W2270655161 @default.
- W1583896130 hasRelatedWork W2362805553 @default.
- W1583896130 hasRelatedWork W2567209844 @default.
- W1583896130 hasRelatedWork W2611672557 @default.
- W1583896130 hasRelatedWork W2616928650 @default.
- W1583896130 hasRelatedWork W2792464796 @default.
- W1583896130 hasRelatedWork W2963452449 @default.
- W1583896130 hasRelatedWork W3213048802 @default.
- W1583896130 isParatext "false" @default.
- W1583896130 isRetracted "false" @default.
- W1583896130 magId "1583896130" @default.
- W1583896130 workType "article" @default.