Matches in SemOpenAlex for { <https://semopenalex.org/work/W1583962337> ?p ?o ?g. }
- W1583962337 abstract "Direct detection of gravitational radiation, predicted by Einstein’s general theory of relativity, remains one of the most exciting challenges in experimental physics. Due to their relatively weak interaction with matter, gravitational waves promise to allow exploration of hitherto inaccessible objects and epochs. Unfortunately, this weak coupling also hinders detection with strain amplitudes at the Earth estimated to be of order 10^−21.Due to their wide bandwidth and theoretical sensitivity, kilometre-scale Michelson style interferometers have become the preferred instrument with which to attempt ground based detection. A worldwide network of first generation instruments has been constructed and prodigious volumes of data recorded. Despite each instrument approaching or having reached its design sensitivity, a confirmed detection remains elusive.Planned upgrades to these instruments aim to increase strain sensitivity by an order of magnitude, commencing the era of second generation detectors. Entry into this regime will be accompanied by an entirely new set of challenges, two of which are addressed in this work.As advanced interferometers are commissioned, instrumental artifacts will give way to fundamental noise sources. In the region of peak sensitivity it is expected that thermal noise in the interferometers’ dielectric mirror coatings will be the principal source of displacement noise. Theory suggests that increasing the spot size of laser light incident on these mirrors will reduce the measured thermal noise. In the first part of this work we examine one method of realising larger spots.By adopting non-spherical mirrors in the interferometers’ arms it is possible to create resonators which support a wide, flat-topped field known as the mesa beam. This beam has been shown to theoretically reduce all forms of mirror thermal noise without being significantly more difficult to control. In this work we investigate these claims using a bespoke prototype mirror. The first results regarding a non-Gaussian beam created in a manner applicable to a gravitational wave interferometer are presented.A common theme among all second generation interferometer designs is the desire to maximise circulating power. This increased power is partnered by commensurately increased thermal perturbations. Since the attractive properties of the mesa beam are produced by the fine structure of its supporting mirrors, it is important that we understand the effects absorption of stored optical power could have on mesa fields. In the second part of this work we report on numerical evaluations of measured thermal noise and mesa beam intensity profile as a function of absorbed power.Increased optical power also has less obvious consequences. As a result of radiation pressure, there exists a pathway between optical energy stored in an interferometer’s arms and mechanical energy stored in the acoustic modes of its test masses. Under appropriate conditions, this coupling can excite one or more test masses to such a degree that interferometer operation becomes impossible. In the final part of this work we determine whether it is possible to mitigate these parametric instabilities using electrostatic actuators originally designed to control the position and orientation of the test masses." @default.
- W1583962337 created "2016-06-24" @default.
- W1583962337 creator A5047654727 @default.
- W1583962337 date "2010-01-01" @default.
- W1583962337 modified "2023-09-24" @default.
- W1583962337 title "On non-Gaussian beams and optomechanical parametric instabilities in interferometric gravitational wave detectors" @default.
- W1583962337 cites W1489661330 @default.
- W1583962337 cites W1513903530 @default.
- W1583962337 cites W1532665339 @default.
- W1583962337 cites W1647781491 @default.
- W1583962337 cites W166741528 @default.
- W1583962337 cites W1676451015 @default.
- W1583962337 cites W1790675403 @default.
- W1583962337 cites W1825324149 @default.
- W1583962337 cites W1965110820 @default.
- W1583962337 cites W1965516292 @default.
- W1583962337 cites W1966636433 @default.
- W1583962337 cites W1968456972 @default.
- W1583962337 cites W1971828964 @default.
- W1583962337 cites W1972192063 @default.
- W1583962337 cites W1973422651 @default.
- W1583962337 cites W1973904297 @default.
- W1583962337 cites W1977045967 @default.
- W1583962337 cites W1977636917 @default.
- W1583962337 cites W1977673235 @default.
- W1583962337 cites W1979817505 @default.
- W1583962337 cites W1980200497 @default.
- W1583962337 cites W1980488430 @default.
- W1583962337 cites W1980595084 @default.
- W1583962337 cites W1981064840 @default.
- W1583962337 cites W1984165932 @default.
- W1583962337 cites W1985494751 @default.
- W1583962337 cites W1987031856 @default.
- W1583962337 cites W1987129377 @default.
- W1583962337 cites W1987733395 @default.
- W1583962337 cites W1992794118 @default.
- W1583962337 cites W1996730231 @default.
- W1583962337 cites W1996936355 @default.
- W1583962337 cites W1997264754 @default.
- W1583962337 cites W1997873328 @default.
- W1583962337 cites W2000559777 @default.
- W1583962337 cites W2001972467 @default.
- W1583962337 cites W2002752990 @default.
- W1583962337 cites W2006784940 @default.
- W1583962337 cites W2007216461 @default.
- W1583962337 cites W2009264611 @default.
- W1583962337 cites W2010984746 @default.
- W1583962337 cites W2011409251 @default.
- W1583962337 cites W2012940593 @default.
- W1583962337 cites W2017260492 @default.
- W1583962337 cites W2018007891 @default.
- W1583962337 cites W2018597198 @default.
- W1583962337 cites W2019709661 @default.
- W1583962337 cites W2019874220 @default.
- W1583962337 cites W2020300541 @default.
- W1583962337 cites W2022361921 @default.
- W1583962337 cites W2025343678 @default.
- W1583962337 cites W2028827994 @default.
- W1583962337 cites W2028961960 @default.
- W1583962337 cites W2030919359 @default.
- W1583962337 cites W2032808966 @default.
- W1583962337 cites W2038188357 @default.
- W1583962337 cites W2038415079 @default.
- W1583962337 cites W2038456223 @default.
- W1583962337 cites W2038462420 @default.
- W1583962337 cites W2039244313 @default.
- W1583962337 cites W2041799611 @default.
- W1583962337 cites W2043311063 @default.
- W1583962337 cites W2044098444 @default.
- W1583962337 cites W2044526278 @default.
- W1583962337 cites W2045081423 @default.
- W1583962337 cites W2045555203 @default.
- W1583962337 cites W2049007728 @default.
- W1583962337 cites W2050730625 @default.
- W1583962337 cites W2051582945 @default.
- W1583962337 cites W2051824829 @default.
- W1583962337 cites W2052134301 @default.
- W1583962337 cites W2054633427 @default.
- W1583962337 cites W2057709333 @default.
- W1583962337 cites W2060778689 @default.
- W1583962337 cites W2061260402 @default.
- W1583962337 cites W2061586657 @default.
- W1583962337 cites W2063306814 @default.
- W1583962337 cites W2063641358 @default.
- W1583962337 cites W2066942782 @default.
- W1583962337 cites W2068206314 @default.
- W1583962337 cites W2069248533 @default.
- W1583962337 cites W2069854974 @default.
- W1583962337 cites W2070131947 @default.
- W1583962337 cites W2072766443 @default.
- W1583962337 cites W2074674763 @default.
- W1583962337 cites W2074966278 @default.
- W1583962337 cites W2076373473 @default.
- W1583962337 cites W2077490622 @default.
- W1583962337 cites W2078268415 @default.
- W1583962337 cites W2078437593 @default.
- W1583962337 cites W2078522652 @default.
- W1583962337 cites W2079079051 @default.
- W1583962337 cites W2079296779 @default.
- W1583962337 cites W2079598615 @default.