Matches in SemOpenAlex for { <https://semopenalex.org/work/W1585754671> ?p ?o ?g. }
- W1585754671 endingPage "32" @default.
- W1585754671 startingPage "25" @default.
- W1585754671 abstract "Interest in multioutput kernel methods is increasing, whether under the guise of multitask learning, multisensor networks or structured output data. From the Gaussian process perspective a multioutput Mercer kernel is a covariance function over correlated output functions. One way of constructing such kernels is based on convolution processes (CP). A key problem for this approach is efficient inference. Alvarez and Lawrence recently presented a sparse approximation for CPs that enabled efficient inference. In this paper, we extend this work in two directions: we introduce the concept of variational inducing functions to handle potential non-smooth functions involved in the kernel CP construction and we consider an alternative approach to approximate inference based on variational methods, extending the work by Titsias (2009) to the multiple output case. We demonstrate our approaches on prediction of school marks, compiler performance and financial time series." @default.
- W1585754671 created "2016-06-24" @default.
- W1585754671 creator A5007248971 @default.
- W1585754671 creator A5017255421 @default.
- W1585754671 creator A5023849469 @default.
- W1585754671 creator A5084123747 @default.
- W1585754671 date "2010-03-31" @default.
- W1585754671 modified "2023-09-30" @default.
- W1585754671 title "Efficient Multioutput Gaussian Processes through Variational Inducing Kernels" @default.
- W1585754671 cites W137285897 @default.
- W1585754671 cites W1490533726 @default.
- W1585754671 cites W1497675750 @default.
- W1585754671 cites W1512149552 @default.
- W1585754671 cites W1571870753 @default.
- W1585754671 cites W1574838467 @default.
- W1585754671 cites W1746819321 @default.
- W1585754671 cites W2099768828 @default.
- W1585754671 cites W2119595900 @default.
- W1585754671 cites W2123899739 @default.
- W1585754671 cites W2124584833 @default.
- W1585754671 cites W2141570288 @default.
- W1585754671 cites W2143672530 @default.
- W1585754671 cites W2149842772 @default.
- W1585754671 cites W2167986580 @default.
- W1585754671 cites W3138949179 @default.
- W1585754671 hasPublicationYear "2010" @default.
- W1585754671 type Work @default.
- W1585754671 sameAs 1585754671 @default.
- W1585754671 citedByCount "63" @default.
- W1585754671 countsByYear W15857546712012 @default.
- W1585754671 countsByYear W15857546712013 @default.
- W1585754671 countsByYear W15857546712014 @default.
- W1585754671 countsByYear W15857546712015 @default.
- W1585754671 countsByYear W15857546712016 @default.
- W1585754671 countsByYear W15857546712017 @default.
- W1585754671 countsByYear W15857546712018 @default.
- W1585754671 countsByYear W15857546712019 @default.
- W1585754671 countsByYear W15857546712020 @default.
- W1585754671 countsByYear W15857546712021 @default.
- W1585754671 crossrefType "proceedings-article" @default.
- W1585754671 hasAuthorship W1585754671A5007248971 @default.
- W1585754671 hasAuthorship W1585754671A5017255421 @default.
- W1585754671 hasAuthorship W1585754671A5023849469 @default.
- W1585754671 hasAuthorship W1585754671A5084123747 @default.
- W1585754671 hasConcept C105795698 @default.
- W1585754671 hasConcept C11413529 @default.
- W1585754671 hasConcept C118615104 @default.
- W1585754671 hasConcept C121332964 @default.
- W1585754671 hasConcept C126255220 @default.
- W1585754671 hasConcept C12713177 @default.
- W1585754671 hasConcept C137250428 @default.
- W1585754671 hasConcept C154945302 @default.
- W1585754671 hasConcept C163716315 @default.
- W1585754671 hasConcept C178650346 @default.
- W1585754671 hasConcept C185142706 @default.
- W1585754671 hasConcept C2776214188 @default.
- W1585754671 hasConcept C28826006 @default.
- W1585754671 hasConcept C33923547 @default.
- W1585754671 hasConcept C41008148 @default.
- W1585754671 hasConcept C45347329 @default.
- W1585754671 hasConcept C50644808 @default.
- W1585754671 hasConcept C61326573 @default.
- W1585754671 hasConcept C62520636 @default.
- W1585754671 hasConcept C7218915 @default.
- W1585754671 hasConcept C74193536 @default.
- W1585754671 hasConceptScore W1585754671C105795698 @default.
- W1585754671 hasConceptScore W1585754671C11413529 @default.
- W1585754671 hasConceptScore W1585754671C118615104 @default.
- W1585754671 hasConceptScore W1585754671C121332964 @default.
- W1585754671 hasConceptScore W1585754671C126255220 @default.
- W1585754671 hasConceptScore W1585754671C12713177 @default.
- W1585754671 hasConceptScore W1585754671C137250428 @default.
- W1585754671 hasConceptScore W1585754671C154945302 @default.
- W1585754671 hasConceptScore W1585754671C163716315 @default.
- W1585754671 hasConceptScore W1585754671C178650346 @default.
- W1585754671 hasConceptScore W1585754671C185142706 @default.
- W1585754671 hasConceptScore W1585754671C2776214188 @default.
- W1585754671 hasConceptScore W1585754671C28826006 @default.
- W1585754671 hasConceptScore W1585754671C33923547 @default.
- W1585754671 hasConceptScore W1585754671C41008148 @default.
- W1585754671 hasConceptScore W1585754671C45347329 @default.
- W1585754671 hasConceptScore W1585754671C50644808 @default.
- W1585754671 hasConceptScore W1585754671C61326573 @default.
- W1585754671 hasConceptScore W1585754671C62520636 @default.
- W1585754671 hasConceptScore W1585754671C7218915 @default.
- W1585754671 hasConceptScore W1585754671C74193536 @default.
- W1585754671 hasLocation W15857546711 @default.
- W1585754671 hasOpenAccess W1585754671 @default.
- W1585754671 hasPrimaryLocation W15857546711 @default.
- W1585754671 hasRelatedWork W137285897 @default.
- W1585754671 hasRelatedWork W1490533726 @default.
- W1585754671 hasRelatedWork W1497675750 @default.
- W1585754671 hasRelatedWork W1533660737 @default.
- W1585754671 hasRelatedWork W1545951971 @default.
- W1585754671 hasRelatedWork W1571870753 @default.
- W1585754671 hasRelatedWork W1746819321 @default.
- W1585754671 hasRelatedWork W1777124189 @default.
- W1585754671 hasRelatedWork W2059980448 @default.