Matches in SemOpenAlex for { <https://semopenalex.org/work/W1586994930> ?p ?o ?g. }
- W1586994930 endingPage "305" @default.
- W1586994930 startingPage "293" @default.
- W1586994930 abstract "Data mining techniques are widely used for intrusion detection since they have the capability of automation and improving the performance. However, using a single classification technique for intrusion detection might involve some difficulties and limitations such as high complexity, instability, and low detection precision for less frequent attacks. Ensemble classifiers can address these issues as they combine different classifiers and obtain better results for predictions. In this paper, a novel ensemble method with neural networks is proposed for intrusion detection based on fuzzy clustering and stacking combination method. We use fuzzy clustering in order to divide the dataset into more homogeneous portions. The stacking combination method is used to aggregate the predictions of the base models and reduce their errors in order to enhance detection accuracy. The experimental results on NSL-KDD dataset demonstrate that the performance of our proposed ensemble method is higher compared to other well-known classification techniques, particularly when the classes of attacks are small." @default.
- W1586994930 created "2016-06-24" @default.
- W1586994930 creator A5011810327 @default.
- W1586994930 creator A5034157548 @default.
- W1586994930 creator A5079844971 @default.
- W1586994930 date "2015-02-21" @default.
- W1586994930 modified "2023-09-23" @default.
- W1586994930 title "Effective Intrusion Detection with a Neural Network Ensemble Using Fuzzy Clustering and Stacking Combination Method" @default.
- W1586994930 cites W1542856841 @default.
- W1586994930 cites W1562919956 @default.
- W1586994930 cites W1578627936 @default.
- W1586994930 cites W1582290234 @default.
- W1586994930 cites W1585051700 @default.
- W1586994930 cites W1621597387 @default.
- W1586994930 cites W1642161394 @default.
- W1586994930 cites W1797274144 @default.
- W1586994930 cites W1887038067 @default.
- W1586994930 cites W1969466477 @default.
- W1586994930 cites W1977264295 @default.
- W1586994930 cites W1977739409 @default.
- W1586994930 cites W1981399499 @default.
- W1586994930 cites W1995064042 @default.
- W1586994930 cites W1997741525 @default.
- W1586994930 cites W1999549544 @default.
- W1586994930 cites W2002181184 @default.
- W1586994930 cites W2008416470 @default.
- W1586994930 cites W2023294425 @default.
- W1586994930 cites W2029864452 @default.
- W1586994930 cites W2042642342 @default.
- W1586994930 cites W2053677366 @default.
- W1586994930 cites W2058307353 @default.
- W1586994930 cites W2066832805 @default.
- W1586994930 cites W2083911205 @default.
- W1586994930 cites W2099940443 @default.
- W1586994930 cites W2101109743 @default.
- W1586994930 cites W2102734279 @default.
- W1586994930 cites W2105779206 @default.
- W1586994930 cites W2113076747 @default.
- W1586994930 cites W2116065364 @default.
- W1586994930 cites W2124776405 @default.
- W1586994930 cites W2124868070 @default.
- W1586994930 cites W2127835038 @default.
- W1586994930 cites W2128073546 @default.
- W1586994930 cites W2130802299 @default.
- W1586994930 cites W2135293965 @default.
- W1586994930 cites W2144012133 @default.
- W1586994930 cites W2156204309 @default.
- W1586994930 cites W2158275940 @default.
- W1586994930 cites W2160598920 @default.
- W1586994930 cites W2165313080 @default.
- W1586994930 cites W2287408518 @default.
- W1586994930 cites W2351058744 @default.
- W1586994930 cites W2537923357 @default.
- W1586994930 cites W28412257 @default.
- W1586994930 cites W9210882 @default.
- W1586994930 hasPublicationYear "2015" @default.
- W1586994930 type Work @default.
- W1586994930 sameAs 1586994930 @default.
- W1586994930 citedByCount "6" @default.
- W1586994930 countsByYear W15869949302016 @default.
- W1586994930 countsByYear W15869949302019 @default.
- W1586994930 countsByYear W15869949302021 @default.
- W1586994930 crossrefType "journal-article" @default.
- W1586994930 hasAuthorship W1586994930A5011810327 @default.
- W1586994930 hasAuthorship W1586994930A5034157548 @default.
- W1586994930 hasAuthorship W1586994930A5079844971 @default.
- W1586994930 hasConcept C119857082 @default.
- W1586994930 hasConcept C121332964 @default.
- W1586994930 hasConcept C124101348 @default.
- W1586994930 hasConcept C153180895 @default.
- W1586994930 hasConcept C154945302 @default.
- W1586994930 hasConcept C17212007 @default.
- W1586994930 hasConcept C33347731 @default.
- W1586994930 hasConcept C35525427 @default.
- W1586994930 hasConcept C41008148 @default.
- W1586994930 hasConcept C45942800 @default.
- W1586994930 hasConcept C46141821 @default.
- W1586994930 hasConcept C50644808 @default.
- W1586994930 hasConcept C58166 @default.
- W1586994930 hasConcept C73555534 @default.
- W1586994930 hasConceptScore W1586994930C119857082 @default.
- W1586994930 hasConceptScore W1586994930C121332964 @default.
- W1586994930 hasConceptScore W1586994930C124101348 @default.
- W1586994930 hasConceptScore W1586994930C153180895 @default.
- W1586994930 hasConceptScore W1586994930C154945302 @default.
- W1586994930 hasConceptScore W1586994930C17212007 @default.
- W1586994930 hasConceptScore W1586994930C33347731 @default.
- W1586994930 hasConceptScore W1586994930C35525427 @default.
- W1586994930 hasConceptScore W1586994930C41008148 @default.
- W1586994930 hasConceptScore W1586994930C45942800 @default.
- W1586994930 hasConceptScore W1586994930C46141821 @default.
- W1586994930 hasConceptScore W1586994930C50644808 @default.
- W1586994930 hasConceptScore W1586994930C58166 @default.
- W1586994930 hasConceptScore W1586994930C73555534 @default.
- W1586994930 hasIssue "4" @default.
- W1586994930 hasLocation W15869949301 @default.
- W1586994930 hasOpenAccess W1586994930 @default.
- W1586994930 hasPrimaryLocation W15869949301 @default.