Matches in SemOpenAlex for { <https://semopenalex.org/work/W1587082012> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1587082012 endingPage "464" @default.
- W1587082012 startingPage "457" @default.
- W1587082012 abstract "A tapped delay neural network (TDNN) with an adaptive learning and pruning algorithm is proposed to predict the nonlinear time serial stock indexes. The TDNN is trained by the recursive least square (RLS) in which the learning-rate parameter can be chosen automatically. This results in the network converging fast. Subsequently the architecture of the trained neural network is optimized by utilizing pruning algorithm to reduce the computational complexity and enhance the network’s generalization. And then the optimized network is retrained so that it has optimum parameters. At last the test samples are predicted by the ultimate network. The simulation and comparison show that this optimized neuron network model can not only reduce the calculating complexity greatly, but also improve the prediction precision. In our simulation, the computational complexity is reduced to 0.0556 and mean square error of test samples reaches 8.7961×10− 5." @default.
- W1587082012 created "2016-06-24" @default.
- W1587082012 creator A5012704143 @default.
- W1587082012 creator A5046885079 @default.
- W1587082012 creator A5081496403 @default.
- W1587082012 date "2007-07-16" @default.
- W1587082012 modified "2023-09-24" @default.
- W1587082012 title "Stock Index Prediction Based on Adaptive Training and Pruning Algorithm" @default.
- W1587082012 cites W1489030472 @default.
- W1587082012 cites W2034637379 @default.
- W1587082012 cites W2111860494 @default.
- W1587082012 cites W2142615401 @default.
- W1587082012 cites W2342764781 @default.
- W1587082012 doi "https://doi.org/10.1007/978-3-540-72393-6_55" @default.
- W1587082012 hasPublicationYear "2007" @default.
- W1587082012 type Work @default.
- W1587082012 sameAs 1587082012 @default.
- W1587082012 citedByCount "6" @default.
- W1587082012 countsByYear W15870820122016 @default.
- W1587082012 countsByYear W15870820122017 @default.
- W1587082012 countsByYear W15870820122020 @default.
- W1587082012 countsByYear W15870820122021 @default.
- W1587082012 crossrefType "book-chapter" @default.
- W1587082012 hasAuthorship W1587082012A5012704143 @default.
- W1587082012 hasAuthorship W1587082012A5046885079 @default.
- W1587082012 hasAuthorship W1587082012A5081496403 @default.
- W1587082012 hasConcept C105795698 @default.
- W1587082012 hasConcept C108010975 @default.
- W1587082012 hasConcept C11413529 @default.
- W1587082012 hasConcept C119857082 @default.
- W1587082012 hasConcept C134306372 @default.
- W1587082012 hasConcept C139945424 @default.
- W1587082012 hasConcept C154945302 @default.
- W1587082012 hasConcept C175202392 @default.
- W1587082012 hasConcept C177148314 @default.
- W1587082012 hasConcept C179799912 @default.
- W1587082012 hasConcept C193415008 @default.
- W1587082012 hasConcept C33923547 @default.
- W1587082012 hasConcept C38652104 @default.
- W1587082012 hasConcept C41008148 @default.
- W1587082012 hasConcept C50644808 @default.
- W1587082012 hasConcept C6557445 @default.
- W1587082012 hasConcept C86803240 @default.
- W1587082012 hasConceptScore W1587082012C105795698 @default.
- W1587082012 hasConceptScore W1587082012C108010975 @default.
- W1587082012 hasConceptScore W1587082012C11413529 @default.
- W1587082012 hasConceptScore W1587082012C119857082 @default.
- W1587082012 hasConceptScore W1587082012C134306372 @default.
- W1587082012 hasConceptScore W1587082012C139945424 @default.
- W1587082012 hasConceptScore W1587082012C154945302 @default.
- W1587082012 hasConceptScore W1587082012C175202392 @default.
- W1587082012 hasConceptScore W1587082012C177148314 @default.
- W1587082012 hasConceptScore W1587082012C179799912 @default.
- W1587082012 hasConceptScore W1587082012C193415008 @default.
- W1587082012 hasConceptScore W1587082012C33923547 @default.
- W1587082012 hasConceptScore W1587082012C38652104 @default.
- W1587082012 hasConceptScore W1587082012C41008148 @default.
- W1587082012 hasConceptScore W1587082012C50644808 @default.
- W1587082012 hasConceptScore W1587082012C6557445 @default.
- W1587082012 hasConceptScore W1587082012C86803240 @default.
- W1587082012 hasLocation W15870820121 @default.
- W1587082012 hasOpenAccess W1587082012 @default.
- W1587082012 hasPrimaryLocation W15870820121 @default.
- W1587082012 hasRelatedWork W2005759508 @default.
- W1587082012 hasRelatedWork W2123212884 @default.
- W1587082012 hasRelatedWork W2386387936 @default.
- W1587082012 hasRelatedWork W2989932438 @default.
- W1587082012 hasRelatedWork W3132254705 @default.
- W1587082012 hasRelatedWork W4225307033 @default.
- W1587082012 hasRelatedWork W4236038968 @default.
- W1587082012 hasRelatedWork W1629725936 @default.
- W1587082012 hasRelatedWork W2125637597 @default.
- W1587082012 hasRelatedWork W2516580779 @default.
- W1587082012 isParatext "false" @default.
- W1587082012 isRetracted "false" @default.
- W1587082012 magId "1587082012" @default.
- W1587082012 workType "book-chapter" @default.