Matches in SemOpenAlex for { <https://semopenalex.org/work/W1587438051> ?p ?o ?g. }
- W1587438051 abstract "We consider a class of smooth oriented Lorentzian manifolds in dimensions three and four which admit a nowhere vanishing conformal Killing vector and a closed two-form that is invariant under the Lie algebra of conformal Killing vectors. The invariant two-form is constrained in a particular way by the conformal geometry of the manifold. In three dimensions, the conformal Killing vector must be everywhere causal (or null if the invariant two-form vanishes identically). In four dimensions, the conformal Killing vector must be everywhere null and the invariant two-form vanishes identically if the geometry is everywhere of Petrov type N or O. To the conformal class of any such geometry, it is possible to assign a particular Lie superalgebra structure, called a conformal symmetry superalgebra. The even part of this superalgebra contains conformal Killing vectors and constant R-symmetries while the odd part contains (charged) twistor spinors. The largest possible dimension of a conformal symmetry superalgebra is realised only for geometries that are locally conformally flat. We determine precisely which non-trivial conformal classes of metrics admit a conformal symmetry superalgebra with the next largest possible dimension, and compute all the associated submaximal conformal symmetry superalgebras. In four dimensions, we also compute symmetry superalgebras for a class of Ricci-flat Lorentzian geometries not of Petrov type N or O which admit a null Killing vector." @default.
- W1587438051 created "2016-06-24" @default.
- W1587438051 creator A5013527874 @default.
- W1587438051 date "2016-02-01" @default.
- W1587438051 modified "2023-10-18" @default.
- W1587438051 title "Submaximal conformal symmetry superalgebras for Lorentzian manifolds of low dimension" @default.
- W1587438051 cites W1971904185 @default.
- W1587438051 cites W1973228081 @default.
- W1587438051 cites W1973704528 @default.
- W1587438051 cites W1977008578 @default.
- W1587438051 cites W1980873935 @default.
- W1587438051 cites W1999211685 @default.
- W1587438051 cites W2000799288 @default.
- W1587438051 cites W2001424441 @default.
- W1587438051 cites W2001491057 @default.
- W1587438051 cites W2009153084 @default.
- W1587438051 cites W2013563941 @default.
- W1587438051 cites W2015743443 @default.
- W1587438051 cites W2024551315 @default.
- W1587438051 cites W2025971962 @default.
- W1587438051 cites W2027921377 @default.
- W1587438051 cites W2031341011 @default.
- W1587438051 cites W2034919802 @default.
- W1587438051 cites W2038386879 @default.
- W1587438051 cites W2049775907 @default.
- W1587438051 cites W2051633647 @default.
- W1587438051 cites W2057015038 @default.
- W1587438051 cites W2062269517 @default.
- W1587438051 cites W2069185213 @default.
- W1587438051 cites W2073865550 @default.
- W1587438051 cites W2078740374 @default.
- W1587438051 cites W2114599939 @default.
- W1587438051 cites W2128452450 @default.
- W1587438051 cites W2138719133 @default.
- W1587438051 cites W2142202779 @default.
- W1587438051 cites W2143468727 @default.
- W1587438051 cites W2150511995 @default.
- W1587438051 cites W2166133016 @default.
- W1587438051 cites W2322187432 @default.
- W1587438051 cites W2322598669 @default.
- W1587438051 cites W23268088 @default.
- W1587438051 cites W2950644275 @default.
- W1587438051 cites W3098319530 @default.
- W1587438051 cites W3099374726 @default.
- W1587438051 cites W3100341295 @default.
- W1587438051 cites W3100403834 @default.
- W1587438051 cites W3100673025 @default.
- W1587438051 cites W3101741693 @default.
- W1587438051 cites W3102098938 @default.
- W1587438051 cites W3102784602 @default.
- W1587438051 cites W3102842395 @default.
- W1587438051 cites W3103334852 @default.
- W1587438051 cites W3103345005 @default.
- W1587438051 cites W3103901357 @default.
- W1587438051 cites W3104538482 @default.
- W1587438051 cites W3104737286 @default.
- W1587438051 cites W3105215804 @default.
- W1587438051 cites W3105589135 @default.
- W1587438051 cites W3105792348 @default.
- W1587438051 cites W3105879683 @default.
- W1587438051 cites W3106043189 @default.
- W1587438051 cites W3122873535 @default.
- W1587438051 cites W3124121691 @default.
- W1587438051 cites W4211047543 @default.
- W1587438051 cites W4211053277 @default.
- W1587438051 cites W4235602994 @default.
- W1587438051 cites W63794908 @default.
- W1587438051 doi "https://doi.org/10.1007/jhep02(2016)008" @default.
- W1587438051 hasPublicationYear "2016" @default.
- W1587438051 type Work @default.
- W1587438051 sameAs 1587438051 @default.
- W1587438051 citedByCount "3" @default.
- W1587438051 countsByYear W15874380512016 @default.
- W1587438051 countsByYear W15874380512017 @default.
- W1587438051 countsByYear W15874380512018 @default.
- W1587438051 crossrefType "journal-article" @default.
- W1587438051 hasAuthorship W1587438051A5013527874 @default.
- W1587438051 hasBestOaLocation W15874380511 @default.
- W1587438051 hasConcept C121332964 @default.
- W1587438051 hasConcept C125669323 @default.
- W1587438051 hasConcept C134306372 @default.
- W1587438051 hasConcept C136119220 @default.
- W1587438051 hasConcept C155765329 @default.
- W1587438051 hasConcept C173848574 @default.
- W1587438051 hasConcept C186863843 @default.
- W1587438051 hasConcept C190470478 @default.
- W1587438051 hasConcept C202444582 @default.
- W1587438051 hasConcept C33923547 @default.
- W1587438051 hasConcept C37914503 @default.
- W1587438051 hasConcept C42519931 @default.
- W1587438051 hasConcept C51568863 @default.
- W1587438051 hasConcept C53216431 @default.
- W1587438051 hasConcept C62520636 @default.
- W1587438051 hasConcept C73648015 @default.
- W1587438051 hasConcept C98214594 @default.
- W1587438051 hasConceptScore W1587438051C121332964 @default.
- W1587438051 hasConceptScore W1587438051C125669323 @default.
- W1587438051 hasConceptScore W1587438051C134306372 @default.
- W1587438051 hasConceptScore W1587438051C136119220 @default.
- W1587438051 hasConceptScore W1587438051C155765329 @default.