Matches in SemOpenAlex for { <https://semopenalex.org/work/W1587466596> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W1587466596 abstract "In many applications (consumer and commercial imaging, medical imaging, robotics, space research, and etc.) observed images are often degraded due to atmospheric turbulence, relative motion between a scene and a camera, nonuniform illumination, wrong focus, etc. Image restoration refers to the problem of estimating the ideal image from its observed degraded one. Numerous restoration techniques (linear, nonlinear, deterministic, stochastic, etc.) optimized with respect to different were introduced (Banham & Katsaggelos, 1997 ; Jain, 1989; Sezan & Tekalp, 1990; Bovik, 2005; Gonzalez & Woods 2008). The amount of a priori information about degradation such as the size and shape of blurs, noise level determines how mathematically ill-posed the problem is. A priori information can be used in a variety of ways in modeling and algorithm development. The information about the nature of blur (e.g., linear or nonlinear and space-variant or space-invariant) and noise (additive or multiplicative) is used in modeling the input-output relation of imaging systems. In blur modeling, when the type of blur is known (e.g., out of focus, motion, turbulence), the blurring operator can be parameterized using only a few parameters. In image modeling, the ideal image can be modeled, for instance, on the basis of a priori Markovian assumption. In algorithm development, a priori information is used in defining constraints on the solution and in defining a criterion or a quantitative description of the solution. The blind and non-blind deconvolutions were extensively studied, and many techniques were proposed for their solution (Kundur & Hatzinakos, 1996; Bertero & Boccacci, 1998; Biemond et al., 1990; Sroubek & Flusser, 2003). They usually involve some regularization which assures various statistical properties of the image or constrains on the estimated image and restoration filter according to some assumptions. This regularization is required to guarantee a unique solution and stability against noise and some model discrepancies. One of the most popular fundamental techniques is a linear minimum mean square error method. It finds the linear estimate of the ideal image for which the mean square error between the estimate and the ideal image is minimal. This linear operator acting on the observed image to determine the estimate on the base of a priori second-order statistical information about the image and noise processes. For images with sharp changes of intensity, the appropriate regularization is based on variational integrals (Rudin, et al.," @default.
- W1587466596 created "2016-06-24" @default.
- W1587466596 creator A5048101074 @default.
- W1587466596 creator A5062176363 @default.
- W1587466596 creator A5088295953 @default.
- W1587466596 date "2012-04-04" @default.
- W1587466596 modified "2023-10-01" @default.
- W1587466596 title "Image Restoration Using Two-Dimensional Variations" @default.
- W1587466596 cites W1514248469 @default.
- W1587466596 cites W1965392255 @default.
- W1587466596 cites W2017466923 @default.
- W1587466596 cites W2022019087 @default.
- W1587466596 cites W2027231794 @default.
- W1587466596 cites W2028662601 @default.
- W1587466596 cites W2037668346 @default.
- W1587466596 cites W2100115174 @default.
- W1587466596 cites W2103559027 @default.
- W1587466596 cites W2103913786 @default.
- W1587466596 cites W2122275806 @default.
- W1587466596 cites W2122787031 @default.
- W1587466596 cites W2149479098 @default.
- W1587466596 cites W2150060382 @default.
- W1587466596 cites W2150134853 @default.
- W1587466596 cites W2163636005 @default.
- W1587466596 cites W2170950194 @default.
- W1587466596 cites W2171519386 @default.
- W1587466596 cites W80534854 @default.
- W1587466596 doi "https://doi.org/10.5772/36555" @default.
- W1587466596 hasPublicationYear "2012" @default.
- W1587466596 type Work @default.
- W1587466596 sameAs 1587466596 @default.
- W1587466596 citedByCount "0" @default.
- W1587466596 crossrefType "book-chapter" @default.
- W1587466596 hasAuthorship W1587466596A5048101074 @default.
- W1587466596 hasAuthorship W1587466596A5062176363 @default.
- W1587466596 hasAuthorship W1587466596A5088295953 @default.
- W1587466596 hasBestOaLocation W15874665961 @default.
- W1587466596 hasConcept C127313418 @default.
- W1587466596 hasConcept C39432304 @default.
- W1587466596 hasConcept C41008148 @default.
- W1587466596 hasConceptScore W1587466596C127313418 @default.
- W1587466596 hasConceptScore W1587466596C39432304 @default.
- W1587466596 hasConceptScore W1587466596C41008148 @default.
- W1587466596 hasLocation W15874665961 @default.
- W1587466596 hasLocation W15874665962 @default.
- W1587466596 hasOpenAccess W1587466596 @default.
- W1587466596 hasPrimaryLocation W15874665961 @default.
- W1587466596 hasRelatedWork W1999913942 @default.
- W1587466596 hasRelatedWork W2086120259 @default.
- W1587466596 hasRelatedWork W2137941439 @default.
- W1587466596 hasRelatedWork W2245170124 @default.
- W1587466596 hasRelatedWork W2324615561 @default.
- W1587466596 hasRelatedWork W2358668433 @default.
- W1587466596 hasRelatedWork W2390279801 @default.
- W1587466596 hasRelatedWork W2748952813 @default.
- W1587466596 hasRelatedWork W2899084033 @default.
- W1587466596 hasRelatedWork W3186982001 @default.
- W1587466596 isParatext "false" @default.
- W1587466596 isRetracted "false" @default.
- W1587466596 magId "1587466596" @default.
- W1587466596 workType "book-chapter" @default.