Matches in SemOpenAlex for { <https://semopenalex.org/work/W1588092403> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W1588092403 abstract "This paper is devoted to the study of mean-field limit for systems of indistinguables particles undergoing collision processes. As formulated by [Kac, 1956] this limit is based on the chaos propagation, and we (1) prove and quantify this property for Boltzmann collision processes with unbounded collision rates (hard spheres or long-range interactions), (2) prove and quantify this property emph{uniformly in time}. This yields the first chaos propagation result for the spatially homogeneous Boltzmann for true (without cut-off) Maxwell molecules whose Master equation shares similarities with the one of a Levy process and the first quantitative chaos propagation result for the spatially homogeneous Boltzmann for hard spheres (improvement of the convergence result of [Sznitman, 1984]. Moreover our chaos propagation results are the first uniform in time ones for Boltzmann collision processes (to our knowledge), which partly answers the important question raised by Kac of relating the long-time behavior of a particle system with the one of its mean-field limit, and we provide as a surprising application a new proof of the well-known result of gaussian limit of rescaled marginals of uniform measure on the N-dimensional sphere as N goes to infinity (more applications will be provided in a forthcoming work). Our results are based on a new method which reduces the question of chaos propagation to the one of proving a purely functional estimate on some generator operators (consistency estimate) together with fine stability estimates on the flow of the limiting non-linear (stability estimates)." @default.
- W1588092403 created "2016-06-24" @default.
- W1588092403 creator A5021546831 @default.
- W1588092403 creator A5060848970 @default.
- W1588092403 date "2010-01-18" @default.
- W1588092403 modified "2023-09-27" @default.
- W1588092403 title "Quantitative uniform in time chaos propagation for Boltzmann collision processes" @default.
- W1588092403 cites W144806251 @default.
- W1588092403 cites W1522579744 @default.
- W1588092403 cites W1537383557 @default.
- W1588092403 cites W1538135945 @default.
- W1588092403 cites W1568056205 @default.
- W1588092403 cites W1568268352 @default.
- W1588092403 cites W1569313452 @default.
- W1588092403 cites W1575147392 @default.
- W1588092403 cites W1577038623 @default.
- W1588092403 cites W1600015713 @default.
- W1588092403 cites W1637560799 @default.
- W1588092403 cites W182704713 @default.
- W1588092403 cites W1991486559 @default.
- W1588092403 cites W1994933289 @default.
- W1588092403 cites W1998195517 @default.
- W1588092403 cites W2025984590 @default.
- W1588092403 cites W2027383644 @default.
- W1588092403 cites W2046589918 @default.
- W1588092403 cites W2052196064 @default.
- W1588092403 cites W2054673836 @default.
- W1588092403 cites W2055272551 @default.
- W1588092403 cites W2074870049 @default.
- W1588092403 cites W2080877741 @default.
- W1588092403 cites W2082465672 @default.
- W1588092403 cites W2121601696 @default.
- W1588092403 cites W2131947874 @default.
- W1588092403 cites W2160199745 @default.
- W1588092403 cites W2189101238 @default.
- W1588092403 cites W2361554037 @default.
- W1588092403 cites W2525384117 @default.
- W1588092403 cites W3103938450 @default.
- W1588092403 cites W583356579 @default.
- W1588092403 cites W69072573 @default.
- W1588092403 cites W82666754 @default.
- W1588092403 hasPublicationYear "2010" @default.
- W1588092403 type Work @default.
- W1588092403 sameAs 1588092403 @default.
- W1588092403 citedByCount "0" @default.
- W1588092403 crossrefType "posted-content" @default.
- W1588092403 hasAuthorship W1588092403A5021546831 @default.
- W1588092403 hasAuthorship W1588092403A5060848970 @default.
- W1588092403 hasBestOaLocation W15880924031 @default.
- W1588092403 hasConcept C121332964 @default.
- W1588092403 hasConcept C121704057 @default.
- W1588092403 hasConcept C121864883 @default.
- W1588092403 hasConcept C2779374083 @default.
- W1588092403 hasConcept C35304006 @default.
- W1588092403 hasConcept C38652104 @default.
- W1588092403 hasConcept C41008148 @default.
- W1588092403 hasConcept C57879066 @default.
- W1588092403 hasConcept C97355855 @default.
- W1588092403 hasConceptScore W1588092403C121332964 @default.
- W1588092403 hasConceptScore W1588092403C121704057 @default.
- W1588092403 hasConceptScore W1588092403C121864883 @default.
- W1588092403 hasConceptScore W1588092403C2779374083 @default.
- W1588092403 hasConceptScore W1588092403C35304006 @default.
- W1588092403 hasConceptScore W1588092403C38652104 @default.
- W1588092403 hasConceptScore W1588092403C41008148 @default.
- W1588092403 hasConceptScore W1588092403C57879066 @default.
- W1588092403 hasConceptScore W1588092403C97355855 @default.
- W1588092403 hasLocation W15880924031 @default.
- W1588092403 hasLocation W15880924032 @default.
- W1588092403 hasLocation W15880924033 @default.
- W1588092403 hasLocation W15880924034 @default.
- W1588092403 hasOpenAccess W1588092403 @default.
- W1588092403 hasPrimaryLocation W15880924031 @default.
- W1588092403 hasRelatedWork W1588092403 @default.
- W1588092403 hasRelatedWork W1985521609 @default.
- W1588092403 hasRelatedWork W1999823666 @default.
- W1588092403 hasRelatedWork W2061051846 @default.
- W1588092403 hasRelatedWork W2109240129 @default.
- W1588092403 hasRelatedWork W3101092301 @default.
- W1588092403 hasRelatedWork W3176094693 @default.
- W1588092403 hasRelatedWork W4285265683 @default.
- W1588092403 hasRelatedWork W4299164063 @default.
- W1588092403 hasRelatedWork W4302567237 @default.
- W1588092403 isParatext "false" @default.
- W1588092403 isRetracted "false" @default.
- W1588092403 magId "1588092403" @default.
- W1588092403 workType "article" @default.