Matches in SemOpenAlex for { <https://semopenalex.org/work/W1588320163> ?p ?o ?g. }
- W1588320163 abstract "The fields of combinatorial and automated medicinal chemistry have emerged to meet the increasing requirement of new compounds for drug discovery, where speed is of the essence (Loupy, 2002). In this regard, domino (or tandem, or cascade) reactions where “two or more bond-forming transformations take place under the same reaction conditions without adding additional reagents and catalysts, and in which the subsequent reactions result as a consequence of the functionality formed in the previous step” are especially suitable for the generation of libraries of bioactive small molecules (Tietze, 1996, 2000, 2006; Domling, 2006). When performed intermolecularly, they are used to couple small fragments to larger units. In intramolecular reactions, they can bring about cyclizations or bicyclizations, and thus astonishing changes of molecular structures and increases in molecular complexity. This effect can even be enhanced by repeating the same reaction type several times or combining it with a different transformation in a domino fashion. Such sequential processes offer a wide range of possibilities for the efficient construction of high structural diversity and molecular complexity in the desired scaffolds in a single synthetic step simply by proper variation of precursors, thus avoiding time-consuming and costly processes for purification of various precursors and tedious steps of protection and deprotection of functional groups (de Meijere et al., 2005; Tietze et al., 2009). Additionally, they frequently occur with enhanced regio-, diastereo-, and even enantioselectivity for the overall transformation (Ikeda, 2000; Domling & Ugi, 2000; D'Souza & Mueller, 2007). Simultaneously, the emergence of sustainable microwave chemistry has further impacted synthetic chemistry significantly since the introduction of precision controlled microwave reactors. From the pioneering experiments of Gedye (Gedye et al., 1986) and Giguere (Giguere et al., 1986), the use of microwave irradiation as an energy-efficient heat source for accelerating chemical reactions including heterocycle-forming, condensation, and cycloaddition reactions has seen widespread application (Kappe, 2000; Kappe & Stadler, 2005, 2009; Loupy, 2006; Kappe et al., 2009). Therefore, the high density microwave irradiation has matured into a reliable and useful methodology for accelerating reaction processes for the collection of heterocycles. Not only is direct microwave heating able to reduce chemical reaction times from hours to minutes and seconds, but it is also known to reduce side reactions, increase yields, and improve reproducibility. As a result, many academic and industrial research groups are already using microwave-assisted organic" @default.
- W1588320163 created "2016-06-24" @default.
- W1588320163 creator A5004392744 @default.
- W1588320163 creator A5088461558 @default.
- W1588320163 date "2011-02-14" @default.
- W1588320163 modified "2023-10-16" @default.
- W1588320163 title "Microwave-Assisted Domino Reaction in Organic Synthesis" @default.
- W1588320163 cites W1562559930 @default.
- W1588320163 cites W1586413877 @default.
- W1588320163 cites W1964044315 @default.
- W1588320163 cites W1966018057 @default.
- W1588320163 cites W1968465417 @default.
- W1588320163 cites W1973887934 @default.
- W1588320163 cites W1978068380 @default.
- W1588320163 cites W1980626353 @default.
- W1588320163 cites W1988117588 @default.
- W1588320163 cites W1992930332 @default.
- W1588320163 cites W1994492367 @default.
- W1588320163 cites W1999164289 @default.
- W1588320163 cites W2001041552 @default.
- W1588320163 cites W2003377387 @default.
- W1588320163 cites W2005084309 @default.
- W1588320163 cites W2007569098 @default.
- W1588320163 cites W2017794504 @default.
- W1588320163 cites W2023348266 @default.
- W1588320163 cites W2030446909 @default.
- W1588320163 cites W2034473501 @default.
- W1588320163 cites W2043286447 @default.
- W1588320163 cites W2043975388 @default.
- W1588320163 cites W2053325527 @default.
- W1588320163 cites W2056332814 @default.
- W1588320163 cites W2056870421 @default.
- W1588320163 cites W2061607865 @default.
- W1588320163 cites W2064737932 @default.
- W1588320163 cites W2065649191 @default.
- W1588320163 cites W2077418767 @default.
- W1588320163 cites W2081054006 @default.
- W1588320163 cites W2081079093 @default.
- W1588320163 cites W2088275455 @default.
- W1588320163 cites W2089925990 @default.
- W1588320163 cites W2093160936 @default.
- W1588320163 cites W2099834910 @default.
- W1588320163 cites W2104776673 @default.
- W1588320163 cites W2111653783 @default.
- W1588320163 cites W2111677437 @default.
- W1588320163 cites W2112133203 @default.
- W1588320163 cites W2114496091 @default.
- W1588320163 cites W2123021412 @default.
- W1588320163 cites W2126376370 @default.
- W1588320163 cites W2127378043 @default.
- W1588320163 cites W2131385000 @default.
- W1588320163 cites W2157783222 @default.
- W1588320163 cites W2158921432 @default.
- W1588320163 cites W2162977789 @default.
- W1588320163 cites W2173769338 @default.
- W1588320163 cites W2175849755 @default.
- W1588320163 cites W2327396248 @default.
- W1588320163 cites W2481114765 @default.
- W1588320163 cites W2949087118 @default.
- W1588320163 cites W2949164785 @default.
- W1588320163 cites W2949432354 @default.
- W1588320163 cites W2950516819 @default.
- W1588320163 cites W2950798999 @default.
- W1588320163 cites W2950967916 @default.
- W1588320163 cites W2951152766 @default.
- W1588320163 cites W2951799103 @default.
- W1588320163 cites W2951819737 @default.
- W1588320163 cites W2951869012 @default.
- W1588320163 cites W2951982816 @default.
- W1588320163 cites W2952013678 @default.
- W1588320163 cites W2952213564 @default.
- W1588320163 cites W2952667374 @default.
- W1588320163 cites W2952669787 @default.
- W1588320163 cites W2952859754 @default.
- W1588320163 doi "https://doi.org/10.5772/13858" @default.
- W1588320163 hasPublicationYear "2011" @default.
- W1588320163 type Work @default.
- W1588320163 sameAs 1588320163 @default.
- W1588320163 citedByCount "2" @default.
- W1588320163 countsByYear W15883201632018 @default.
- W1588320163 countsByYear W15883201632021 @default.
- W1588320163 crossrefType "book-chapter" @default.
- W1588320163 hasAuthorship W1588320163A5004392744 @default.
- W1588320163 hasAuthorship W1588320163A5088461558 @default.
- W1588320163 hasBestOaLocation W15883201631 @default.
- W1588320163 hasConcept C159985019 @default.
- W1588320163 hasConcept C161790260 @default.
- W1588320163 hasConcept C171250308 @default.
- W1588320163 hasConcept C178790620 @default.
- W1588320163 hasConcept C185592680 @default.
- W1588320163 hasConcept C192562407 @default.
- W1588320163 hasConcept C21951064 @default.
- W1588320163 hasConcept C2776416436 @default.
- W1588320163 hasConcept C2777814067 @default.
- W1588320163 hasConcept C40875361 @default.
- W1588320163 hasConcept C55493867 @default.
- W1588320163 hasConcept C58548122 @default.
- W1588320163 hasConcept C71240020 @default.
- W1588320163 hasConcept C74187038 @default.
- W1588320163 hasConcept C75079739 @default.