Matches in SemOpenAlex for { <https://semopenalex.org/work/W1588896074> ?p ?o ?g. }
- W1588896074 endingPage "962" @default.
- W1588896074 startingPage "949" @default.
- W1588896074 abstract "This paper presents original research initiated by the monitoring needs of a semiconductor production plant. The industrial operations rely on an Information Technology (IT) system, and several time series data are controlled statistically. Unfortunately, these variables often contain outliers, as well as structural changes because of external decisions in the IT activity. As a consequence, it has been observed that the monitoring results obtained with standard techniques could be severely biased. This paper attempts to overcome such difficulties. A new monitoring method is proposed, based on robust Holt–Winters smoothing algorithm, and coupled with a relearning procedure for structural break detection. Such a method is flexible enough for a large‐scale industrial application. We evaluate performance through simulation and show its usefulness in real industrial applications for univariate and multivariate time series. The scope of application deals with IT activity monitoring, but the introduced statistical methods are generic enough for being used in other industrial fields. Copyright © 2014 John Wiley & Sons, Ltd." @default.
- W1588896074 created "2016-06-24" @default.
- W1588896074 creator A5016344513 @default.
- W1588896074 creator A5023932449 @default.
- W1588896074 creator A5075037996 @default.
- W1588896074 date "2014-06-12" @default.
- W1588896074 modified "2023-10-06" @default.
- W1588896074 title "Robust Monitoring of an Industrial IT System in the Presence of Structural Change" @default.
- W1588896074 cites W1501207501 @default.
- W1588896074 cites W1544981413 @default.
- W1588896074 cites W1566641586 @default.
- W1588896074 cites W1681390718 @default.
- W1588896074 cites W1849910422 @default.
- W1588896074 cites W1942100074 @default.
- W1588896074 cites W1962632242 @default.
- W1588896074 cites W2001595608 @default.
- W1588896074 cites W2020196977 @default.
- W1588896074 cites W2031365995 @default.
- W1588896074 cites W2035626526 @default.
- W1588896074 cites W2044422666 @default.
- W1588896074 cites W2062154437 @default.
- W1588896074 cites W2065247689 @default.
- W1588896074 cites W2085866051 @default.
- W1588896074 cites W2090702537 @default.
- W1588896074 cites W2092224475 @default.
- W1588896074 cites W2094059081 @default.
- W1588896074 cites W2095283167 @default.
- W1588896074 cites W2098148222 @default.
- W1588896074 cites W2117829824 @default.
- W1588896074 cites W2132050943 @default.
- W1588896074 cites W2144643813 @default.
- W1588896074 cites W2148477345 @default.
- W1588896074 cites W2152701363 @default.
- W1588896074 cites W2158698691 @default.
- W1588896074 cites W2167036165 @default.
- W1588896074 cites W2167581301 @default.
- W1588896074 cites W2170059033 @default.
- W1588896074 cites W2171150778 @default.
- W1588896074 cites W2477834368 @default.
- W1588896074 cites W2489822048 @default.
- W1588896074 cites W2498631646 @default.
- W1588896074 cites W3022211185 @default.
- W1588896074 cites W3121158818 @default.
- W1588896074 cites W4229530126 @default.
- W1588896074 cites W4232989012 @default.
- W1588896074 cites W4243563432 @default.
- W1588896074 cites W4249116379 @default.
- W1588896074 cites W4249958451 @default.
- W1588896074 cites W4362131110 @default.
- W1588896074 doi "https://doi.org/10.1002/qre.1651" @default.
- W1588896074 hasPublicationYear "2014" @default.
- W1588896074 type Work @default.
- W1588896074 sameAs 1588896074 @default.
- W1588896074 citedByCount "1" @default.
- W1588896074 countsByYear W15888960742022 @default.
- W1588896074 crossrefType "journal-article" @default.
- W1588896074 hasAuthorship W1588896074A5016344513 @default.
- W1588896074 hasAuthorship W1588896074A5023932449 @default.
- W1588896074 hasAuthorship W1588896074A5075037996 @default.
- W1588896074 hasBestOaLocation W15888960742 @default.
- W1588896074 hasConcept C119857082 @default.
- W1588896074 hasConcept C124101348 @default.
- W1588896074 hasConcept C127413603 @default.
- W1588896074 hasConcept C13736549 @default.
- W1588896074 hasConcept C154945302 @default.
- W1588896074 hasConcept C161584116 @default.
- W1588896074 hasConcept C162324750 @default.
- W1588896074 hasConcept C165556158 @default.
- W1588896074 hasConcept C199163554 @default.
- W1588896074 hasConcept C199360897 @default.
- W1588896074 hasConcept C200601418 @default.
- W1588896074 hasConcept C2778012447 @default.
- W1588896074 hasConcept C2984282874 @default.
- W1588896074 hasConcept C31972630 @default.
- W1588896074 hasConcept C3770464 @default.
- W1588896074 hasConcept C41008148 @default.
- W1588896074 hasConcept C739882 @default.
- W1588896074 hasConcept C79337645 @default.
- W1588896074 hasConcept C82753439 @default.
- W1588896074 hasConceptScore W1588896074C119857082 @default.
- W1588896074 hasConceptScore W1588896074C124101348 @default.
- W1588896074 hasConceptScore W1588896074C127413603 @default.
- W1588896074 hasConceptScore W1588896074C13736549 @default.
- W1588896074 hasConceptScore W1588896074C154945302 @default.
- W1588896074 hasConceptScore W1588896074C161584116 @default.
- W1588896074 hasConceptScore W1588896074C162324750 @default.
- W1588896074 hasConceptScore W1588896074C165556158 @default.
- W1588896074 hasConceptScore W1588896074C199163554 @default.
- W1588896074 hasConceptScore W1588896074C199360897 @default.
- W1588896074 hasConceptScore W1588896074C200601418 @default.
- W1588896074 hasConceptScore W1588896074C2778012447 @default.
- W1588896074 hasConceptScore W1588896074C2984282874 @default.
- W1588896074 hasConceptScore W1588896074C31972630 @default.
- W1588896074 hasConceptScore W1588896074C3770464 @default.
- W1588896074 hasConceptScore W1588896074C41008148 @default.
- W1588896074 hasConceptScore W1588896074C739882 @default.
- W1588896074 hasConceptScore W1588896074C79337645 @default.
- W1588896074 hasConceptScore W1588896074C82753439 @default.