Matches in SemOpenAlex for { <https://semopenalex.org/work/W1589652626> ?p ?o ?g. }
- W1589652626 abstract "Summary Until theory and experiment reach new levels of precision, the physics of semiconductor alloys, whether superlattices or not, appears to be adequately treated by the recursion method and a Born-von Karman model such as those described here. But light-scattering studies such as resonant Raman scattering spectroscopy are beginning to provide new and precise information about vibrations in alloys, and, when analyzed with improved models of long-ranged forces, will no doubt allow very detailed comparisons of theory with data. A better understanding of correlations in alloys should follow, and will involve the theory of phase transitions as well. In summary, the recursion method provides a very good way to understand the phonon spectra of the semiconductor alloys discussed here, as well as the spectra of other III-V and II-VI alloys (Amirthara et al. 1985; Fu and Dow 1987; Lucovsky et al. 1975, 1976). While this method provides a satisfactory description of the density of states per squared frequency in an alloy, its primary limitation is that it normally does not provide matrix elements (which can be calculated for large clusters (Ren and Dow 1992), but not for clusters so large as those amenable to treatment with the recursion method). The discussion of one-mode versus two-mode k = 0 optical phonon behavior is seen to be largely moot: unless the masses of the atoms are virtually equal, one invariably finds two-mode behavior, but one of the modes may be resonant with a phonon continuum, and therefore may not be visible. The phonon spectra of the substitutional crystalline semiconducting alloys are nearly “persistent”, but the deviations from this persistent behavior are the alloy modes, and those modes are the subject of investigations of alloy physics. (One should not claim success for an elegant theory that does little more than reproduce the persistent limit!) The advantage of the recursion method as applied to the alloy physics of the semiconductor alloys is that it can be dissected to associate specific features of a spectrum with particular local configurations. With the Redfield method of generating correlated clusters, and with the separation of the alloy problem into the following parts: (i) determination of the cluster (correlated or not), (ii) evaluation of the forces, and (iii) computation of the density of states, it is now possible to predict the main properties of the substitutional crystalline alloy semiconductors. The present work assumed that all of the atoms of the alloy occupied crystalline sites on a zinc-blende lattice. Of course, with strains in the materials, and with diffusion at finite temperatures, this assumption will not be 100% valid. Therefore, one of the next major problems to be addressed is the physics of substitutional nearly-crystalline alloys whose crystal structures deviate from the perfect geometry of the zinc-blende structure, due to strain, for example. This will be interesting from the viewpoint of pure physics, and it has important technological implications: interfaces between alloy semiconductors exhibit interdiffusion, and this interdiffusion is one of the elements scattering electrons and limiting the electronic mobility - and hence limiting the performance of high-speed optoelectronic devices based on these materials." @default.
- W1589652626 created "2016-06-24" @default.
- W1589652626 creator A5001276863 @default.
- W1589652626 creator A5008668497 @default.
- W1589652626 creator A5016030436 @default.
- W1589652626 creator A5034692076 @default.
- W1589652626 date "1995-01-01" @default.
- W1589652626 modified "2023-09-27" @default.
- W1589652626 title "Chapter 5 Phonons in semiconductor alloys" @default.
- W1589652626 cites W109277971 @default.
- W1589652626 cites W128077922 @default.
- W1589652626 cites W1592958377 @default.
- W1589652626 cites W1624213883 @default.
- W1589652626 cites W1666636243 @default.
- W1589652626 cites W1670597142 @default.
- W1589652626 cites W169224190 @default.
- W1589652626 cites W1964573016 @default.
- W1589652626 cites W1964758702 @default.
- W1589652626 cites W1966867047 @default.
- W1589652626 cites W1967365664 @default.
- W1589652626 cites W1968454194 @default.
- W1589652626 cites W1968923928 @default.
- W1589652626 cites W1970771291 @default.
- W1589652626 cites W1973401151 @default.
- W1589652626 cites W1974502568 @default.
- W1589652626 cites W1978887931 @default.
- W1589652626 cites W1979961846 @default.
- W1589652626 cites W1987351866 @default.
- W1589652626 cites W1988624739 @default.
- W1589652626 cites W1990804328 @default.
- W1589652626 cites W1991460522 @default.
- W1589652626 cites W1995666927 @default.
- W1589652626 cites W1997924980 @default.
- W1589652626 cites W1998375473 @default.
- W1589652626 cites W2000759957 @default.
- W1589652626 cites W2001676859 @default.
- W1589652626 cites W2001930367 @default.
- W1589652626 cites W2005349995 @default.
- W1589652626 cites W2007728838 @default.
- W1589652626 cites W2013206109 @default.
- W1589652626 cites W2013863453 @default.
- W1589652626 cites W2021191364 @default.
- W1589652626 cites W2021216153 @default.
- W1589652626 cites W2024842839 @default.
- W1589652626 cites W2026934570 @default.
- W1589652626 cites W2026974692 @default.
- W1589652626 cites W2028912160 @default.
- W1589652626 cites W2028973915 @default.
- W1589652626 cites W2030005880 @default.
- W1589652626 cites W2030967333 @default.
- W1589652626 cites W2031124154 @default.
- W1589652626 cites W2031839553 @default.
- W1589652626 cites W2033177943 @default.
- W1589652626 cites W2033421496 @default.
- W1589652626 cites W2033633666 @default.
- W1589652626 cites W2035388096 @default.
- W1589652626 cites W2040539115 @default.
- W1589652626 cites W2042445818 @default.
- W1589652626 cites W2043033779 @default.
- W1589652626 cites W2044905086 @default.
- W1589652626 cites W2046253578 @default.
- W1589652626 cites W2046413705 @default.
- W1589652626 cites W2049897510 @default.
- W1589652626 cites W2050371931 @default.
- W1589652626 cites W2052782726 @default.
- W1589652626 cites W2052997498 @default.
- W1589652626 cites W2053093277 @default.
- W1589652626 cites W2054150651 @default.
- W1589652626 cites W2056760934 @default.
- W1589652626 cites W2062086642 @default.
- W1589652626 cites W2062219496 @default.
- W1589652626 cites W2063271936 @default.
- W1589652626 cites W2064234754 @default.
- W1589652626 cites W2067635570 @default.
- W1589652626 cites W2071561557 @default.
- W1589652626 cites W2073913639 @default.
- W1589652626 cites W2075652406 @default.
- W1589652626 cites W2076248420 @default.
- W1589652626 cites W2078966028 @default.
- W1589652626 cites W2081442938 @default.
- W1589652626 cites W2081941426 @default.
- W1589652626 cites W2084110580 @default.
- W1589652626 cites W2087892118 @default.
- W1589652626 cites W2088481323 @default.
- W1589652626 cites W2089728753 @default.
- W1589652626 cites W2090077448 @default.
- W1589652626 cites W2090125612 @default.
- W1589652626 cites W2093535552 @default.
- W1589652626 cites W2093688755 @default.
- W1589652626 cites W2127280081 @default.
- W1589652626 cites W2146955458 @default.
- W1589652626 cites W2160716337 @default.
- W1589652626 cites W2230728100 @default.
- W1589652626 cites W2315254814 @default.
- W1589652626 cites W2318991590 @default.
- W1589652626 cites W2467353046 @default.
- W1589652626 cites W2528447589 @default.
- W1589652626 cites W2607690156 @default.
- W1589652626 cites W3003493131 @default.
- W1589652626 cites W3034748896 @default.