Matches in SemOpenAlex for { <https://semopenalex.org/work/W1589819097> ?p ?o ?g. }
- W1589819097 endingPage "4159" @default.
- W1589819097 startingPage "4148" @default.
- W1589819097 abstract "In this paper, we propose a novel model, a discriminatively learned iterative shrinkage (DLIS) model, for color image denoising. The DLIS is a generalization of wavelet shrinkage by iteratively performing shrinkage over patch groups and whole image aggregation. We discriminatively learn the shrinkage functions and basis from the training pairs of noisy/noise-free images, which can adaptively handle different noise characteristics in luminance/chrominance channels, and the unknown structured noise in real-captured color images. Furthermore, to remove the splotchy real color noises, we design a Laplacian pyramid-based denoising framework to progressively recover the clean image from the coarsest scale to the finest scale by the DLIS model learned from the real color noises. Experiments show that our proposed approach can achieve the state-of-the-art denoising results on both synthetic denoising benchmark and real-captured color images." @default.
- W1589819097 created "2016-06-24" @default.
- W1589819097 creator A5037419606 @default.
- W1589819097 creator A5087487533 @default.
- W1589819097 date "2015-11-01" @default.
- W1589819097 modified "2023-10-17" @default.
- W1589819097 title "Color Image Denoising via Discriminatively Learned Iterative Shrinkage" @default.
- W1589819097 cites W1498436455 @default.
- W1589819097 cites W1964394948 @default.
- W1589819097 cites W1971713783 @default.
- W1589819097 cites W1978749115 @default.
- W1589819097 cites W1997147589 @default.
- W1589819097 cites W2037133587 @default.
- W1589819097 cites W2043778742 @default.
- W1589819097 cites W2045079989 @default.
- W1589819097 cites W2056370875 @default.
- W1589819097 cites W2069441534 @default.
- W1589819097 cites W2071142900 @default.
- W1589819097 cites W2075674485 @default.
- W1589819097 cites W2077646121 @default.
- W1589819097 cites W2079182758 @default.
- W1589819097 cites W2083799719 @default.
- W1589819097 cites W2097073572 @default.
- W1589819097 cites W2100556411 @default.
- W1589819097 cites W2113945798 @default.
- W1589819097 cites W2114122776 @default.
- W1589819097 cites W2116692144 @default.
- W1589819097 cites W2119290843 @default.
- W1589819097 cites W2124548376 @default.
- W1589819097 cites W2131686571 @default.
- W1589819097 cites W2133665775 @default.
- W1589819097 cites W2146842127 @default.
- W1589819097 cites W2153663612 @default.
- W1589819097 cites W2158717601 @default.
- W1589819097 cites W2159736423 @default.
- W1589819097 cites W2172275395 @default.
- W1589819097 cites W2536599074 @default.
- W1589819097 cites W4255521522 @default.
- W1589819097 doi "https://doi.org/10.1109/tip.2015.2448352" @default.
- W1589819097 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26111391" @default.
- W1589819097 hasPublicationYear "2015" @default.
- W1589819097 type Work @default.
- W1589819097 sameAs 1589819097 @default.
- W1589819097 citedByCount "21" @default.
- W1589819097 countsByYear W15898190972016 @default.
- W1589819097 countsByYear W15898190972017 @default.
- W1589819097 countsByYear W15898190972018 @default.
- W1589819097 countsByYear W15898190972019 @default.
- W1589819097 countsByYear W15898190972020 @default.
- W1589819097 countsByYear W15898190972021 @default.
- W1589819097 countsByYear W15898190972022 @default.
- W1589819097 crossrefType "journal-article" @default.
- W1589819097 hasAuthorship W1589819097A5037419606 @default.
- W1589819097 hasAuthorship W1589819097A5087487533 @default.
- W1589819097 hasConcept C104317684 @default.
- W1589819097 hasConcept C115961682 @default.
- W1589819097 hasConcept C119857082 @default.
- W1589819097 hasConcept C13280743 @default.
- W1589819097 hasConcept C134306372 @default.
- W1589819097 hasConcept C142575187 @default.
- W1589819097 hasConcept C153180895 @default.
- W1589819097 hasConcept C154945302 @default.
- W1589819097 hasConcept C163204269 @default.
- W1589819097 hasConcept C163294075 @default.
- W1589819097 hasConcept C177148314 @default.
- W1589819097 hasConcept C180145272 @default.
- W1589819097 hasConcept C185592680 @default.
- W1589819097 hasConcept C185798385 @default.
- W1589819097 hasConcept C202474056 @default.
- W1589819097 hasConcept C205649164 @default.
- W1589819097 hasConcept C23431618 @default.
- W1589819097 hasConcept C2524010 @default.
- W1589819097 hasConcept C2983327147 @default.
- W1589819097 hasConcept C30814859 @default.
- W1589819097 hasConcept C31972630 @default.
- W1589819097 hasConcept C33923547 @default.
- W1589819097 hasConcept C41008148 @default.
- W1589819097 hasConcept C47432892 @default.
- W1589819097 hasConcept C55493867 @default.
- W1589819097 hasConcept C63479239 @default.
- W1589819097 hasConcept C65483669 @default.
- W1589819097 hasConcept C73313986 @default.
- W1589819097 hasConcept C99498987 @default.
- W1589819097 hasConceptScore W1589819097C104317684 @default.
- W1589819097 hasConceptScore W1589819097C115961682 @default.
- W1589819097 hasConceptScore W1589819097C119857082 @default.
- W1589819097 hasConceptScore W1589819097C13280743 @default.
- W1589819097 hasConceptScore W1589819097C134306372 @default.
- W1589819097 hasConceptScore W1589819097C142575187 @default.
- W1589819097 hasConceptScore W1589819097C153180895 @default.
- W1589819097 hasConceptScore W1589819097C154945302 @default.
- W1589819097 hasConceptScore W1589819097C163204269 @default.
- W1589819097 hasConceptScore W1589819097C163294075 @default.
- W1589819097 hasConceptScore W1589819097C177148314 @default.
- W1589819097 hasConceptScore W1589819097C180145272 @default.
- W1589819097 hasConceptScore W1589819097C185592680 @default.
- W1589819097 hasConceptScore W1589819097C185798385 @default.
- W1589819097 hasConceptScore W1589819097C202474056 @default.