Matches in SemOpenAlex for { <https://semopenalex.org/work/W1590142885> ?p ?o ?g. }
- W1590142885 abstract "The goals of this task were to evaluate the availability of published temperature-dependent thermodynamic data for radionuclides and sorbing minerals and to evaluate the applicability of published estimation methods for temperature-dependent aqueous complexation, radionuclide mineral precipitation, and sorption. This task fills a gap in the hydrologic source term (HST) modeling approach, which, with few exceptions, has neglected the effects of temperature on radionuclide aqueous complexation, using 25 C complexation data for all temperatures without evaluating the consequences of this assumption. In this task, we have compiled thermodynamic data available in the literature and evaluated the options and benefits of applying temperature-dependent radionuclide speciation to future HST modeling. We use the recent experience of HST modeling at Cheshire (Pawloski et al., 2001) to focus our evaluation. Our literature search revealed that few thermodynamic data or extrapolation methods could be used to define the temperature-dependent speciation of key HST radionuclides Np, Pu, Am, and U, particularly for the higher valence-state (e.g., 5+ and 6+), the oxidation states most pertinent to NTS groundwater conditions at Cheshire. This suggests that using 25 C data for all temperatures may be the best modeling approach currently available. We tested established estimation techniques such as the Criss-Cobblemore » method and other correlation algorithms to calculate thermodynamic parameters needed to extrapolate aqueous complexation data to higher temperatures. For some reactions, the isocoulombic method does allow calculation of free energy data and equilibrium values at higher temperatures. Limitations in algorithms and input data for pentavalent and hexavalent cations prevent extending temperature ranges for reactions involving radionuclides in these oxidation states and their complexes. In addition, for many of the radionuclides of interest, carbonate complexes appear to be the dominant complexes formed in NTS groundwaters, and data for these types of complexes are lacking for radionuclides as well as analog species. For the few species where enough data are available, the effect of temperature on radionuclide aqueous complexation has been calculated. These calculations allow partial estimation of the potential error that may be involved in ignoring speciation changes as a function of temperature, as was done in the Cheshire HST model (Pawloski et al., 2001). In some cases, differences between the most recent 25 C data available in the literature and data used in Pawloski et al. (2001) were more significant than calculated speciation changes as a function of temperature. To incorporate radionuclide speciation as a function of temperature, a robust set of temperature-dependent reaction constants is necessary. Based on our literature search and the few reactions that could be extrapolated to higher temperatures, the change in dominant complexes with temperature cannot be adequately addressed at this time. However, the effect of temperature on speciation can be qualitatively examined. In general, the log K values for radionuclide complexation reactions considered here increase with increasing temperature, suggesting that increasing temperature may enhance radionuclide aqueous complexation. However, complexation reactions often involve H{sup +} and reactant species such as carbonate which exhibit their own temperature-dependent speciation. Thus, any change in the value of a radionuclide complexation log K may be offset or enhanced by temperature effects on pH and carbonate speciation. In addition, sorption processes that involve surface complexation change with increasing temperature, and these reactions may enhance or negate the mobility effects of any increase in aqueous complexation with temperature. While increasing temperature may increase complexation, it also may reduce or increase ligand concentrations through shifts in speciation. Similarly, higher temperatures may favor or reduce sorption and/or co-precipitation in mineral phases. Consequently, the net effect on radionuclide mobility of increasing temperature depends on the effects of temperature on a number of geochemical processes. Thus, it is even difficult to make qualitative assumptions about the direction much less the magnitude of temperature effects on radionuclide mobility. Until sufficient data become available in the literature to precisely capture the effects of temperature on radionuclide complexation, it appears unwarranted to invest in complex estimation techniques based on extrapolations from available data.« less" @default.
- W1590142885 created "2016-06-24" @default.
- W1590142885 creator A5028978175 @default.
- W1590142885 creator A5040269438 @default.
- W1590142885 creator A5071611568 @default.
- W1590142885 creator A5073795398 @default.
- W1590142885 creator A5076325596 @default.
- W1590142885 date "2005-10-31" @default.
- W1590142885 modified "2023-10-17" @default.
- W1590142885 title "Radionuclide Reaction Chemistry as a Function of Temperature at the Cheshire Site" @default.
- W1590142885 cites W111766145 @default.
- W1590142885 cites W1507059058 @default.
- W1590142885 cites W1647927312 @default.
- W1590142885 cites W167619808 @default.
- W1590142885 cites W1708755197 @default.
- W1590142885 cites W1730113890 @default.
- W1590142885 cites W1965859744 @default.
- W1590142885 cites W1969051824 @default.
- W1590142885 cites W1969302318 @default.
- W1590142885 cites W1974579410 @default.
- W1590142885 cites W1982937824 @default.
- W1590142885 cites W1983168351 @default.
- W1590142885 cites W1985893512 @default.
- W1590142885 cites W1987482837 @default.
- W1590142885 cites W1998499059 @default.
- W1590142885 cites W2001255785 @default.
- W1590142885 cites W2004442130 @default.
- W1590142885 cites W2013012903 @default.
- W1590142885 cites W2015735763 @default.
- W1590142885 cites W2016998298 @default.
- W1590142885 cites W2023598090 @default.
- W1590142885 cites W2029064320 @default.
- W1590142885 cites W2031917118 @default.
- W1590142885 cites W2044024128 @default.
- W1590142885 cites W2046175337 @default.
- W1590142885 cites W2047492361 @default.
- W1590142885 cites W2047812362 @default.
- W1590142885 cites W2048630695 @default.
- W1590142885 cites W2054406331 @default.
- W1590142885 cites W2057545160 @default.
- W1590142885 cites W2059929087 @default.
- W1590142885 cites W2062712685 @default.
- W1590142885 cites W2066527077 @default.
- W1590142885 cites W2070857221 @default.
- W1590142885 cites W2081258920 @default.
- W1590142885 cites W2094029332 @default.
- W1590142885 cites W2094152279 @default.
- W1590142885 cites W2109156951 @default.
- W1590142885 cites W2111110876 @default.
- W1590142885 cites W2113768184 @default.
- W1590142885 cites W2158660715 @default.
- W1590142885 cites W2313587620 @default.
- W1590142885 cites W2508162324 @default.
- W1590142885 cites W2512956088 @default.
- W1590142885 cites W259920609 @default.
- W1590142885 cites W3192892338 @default.
- W1590142885 cites W34777095 @default.
- W1590142885 cites W67008415 @default.
- W1590142885 doi "https://doi.org/10.2172/877932" @default.
- W1590142885 hasPublicationYear "2005" @default.
- W1590142885 type Work @default.
- W1590142885 sameAs 1590142885 @default.
- W1590142885 citedByCount "0" @default.
- W1590142885 crossrefType "report" @default.
- W1590142885 hasAuthorship W1590142885A5028978175 @default.
- W1590142885 hasAuthorship W1590142885A5040269438 @default.
- W1590142885 hasAuthorship W1590142885A5071611568 @default.
- W1590142885 hasAuthorship W1590142885A5073795398 @default.
- W1590142885 hasAuthorship W1590142885A5076325596 @default.
- W1590142885 hasBestOaLocation W15901428852 @default.
- W1590142885 hasConcept C105795698 @default.
- W1590142885 hasConcept C121332964 @default.
- W1590142885 hasConcept C132459708 @default.
- W1590142885 hasConcept C147789679 @default.
- W1590142885 hasConcept C150394285 @default.
- W1590142885 hasConcept C158973077 @default.
- W1590142885 hasConcept C184651966 @default.
- W1590142885 hasConcept C185544564 @default.
- W1590142885 hasConcept C185592680 @default.
- W1590142885 hasConcept C33923547 @default.
- W1590142885 hasConcept C39432304 @default.
- W1590142885 hasConcept C58445606 @default.
- W1590142885 hasConcept C97355855 @default.
- W1590142885 hasConceptScore W1590142885C105795698 @default.
- W1590142885 hasConceptScore W1590142885C121332964 @default.
- W1590142885 hasConceptScore W1590142885C132459708 @default.
- W1590142885 hasConceptScore W1590142885C147789679 @default.
- W1590142885 hasConceptScore W1590142885C150394285 @default.
- W1590142885 hasConceptScore W1590142885C158973077 @default.
- W1590142885 hasConceptScore W1590142885C184651966 @default.
- W1590142885 hasConceptScore W1590142885C185544564 @default.
- W1590142885 hasConceptScore W1590142885C185592680 @default.
- W1590142885 hasConceptScore W1590142885C33923547 @default.
- W1590142885 hasConceptScore W1590142885C39432304 @default.
- W1590142885 hasConceptScore W1590142885C58445606 @default.
- W1590142885 hasConceptScore W1590142885C97355855 @default.
- W1590142885 hasLocation W15901428851 @default.
- W1590142885 hasLocation W15901428852 @default.
- W1590142885 hasLocation W15901428853 @default.
- W1590142885 hasOpenAccess W1590142885 @default.