Matches in SemOpenAlex for { <https://semopenalex.org/work/W1590186543> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1590186543 endingPage "1525" @default.
- W1590186543 startingPage "1515" @default.
- W1590186543 abstract "In this paper, we discuss finite rank operators in a closed maximal triangular algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper S> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathcal {S}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Based on the following result that each finite rank operator of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper S> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathcal {S}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be written as a finite sum of rank one operators each belonging to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper S> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathcal {S}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we proved that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis script upper S intersection script upper F script left-parenthesis script upper H script right-parenthesis right-parenthesis Superscript w Super Superscript asterisk Baseline equals left-brace upper T element-of script upper B script left-parenthesis script upper H script right-parenthesis colon upper T upper N subset-of-or-equal-to upper N Subscript tilde Baseline comma for-all upper N element-of script upper N right-brace> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>S</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>F</mml:mi> <mml:mo class=MJX-tex-caligraphic mathvariant=script stretchy=false>(</mml:mo> <mml:mi class=MJX-tex-caligraphic mathvariant=script>H</mml:mi> <mml:mo class=MJX-tex-caligraphic mathvariant=script stretchy=false>)</mml:mo> </mml:mrow> </mml:mrow> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>w</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mi>T</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>B</mml:mi> <mml:mo class=MJX-tex-caligraphic mathvariant=script stretchy=false>(</mml:mo> <mml:mi class=MJX-tex-caligraphic mathvariant=script>H</mml:mi> <mml:mo class=MJX-tex-caligraphic mathvariant=script stretchy=false>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>:</mml:mo> <mml:mi>T</mml:mi> <mml:mi>N</mml:mi> <mml:mo>⊆<!-- ⊆ --></mml:mo> <mml:msub> <mml:mi>N</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∼<!-- ∼ --></mml:mo> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mi mathvariant=normal>∀<!-- ∀ --></mml:mi> <mml:mi>N</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>N</mml:mi> </mml:mrow> <mml:mo fence=false stretchy=false>}</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>({mathcal {S}}cap {mathcal {F(H)}})^{w^{*}}={Tin {mathcal {B(H)}}: TNsubseteq N_{sim }, forall Nin mathcal {N}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N Subscript tilde Baseline equals upper N> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∼<!-- ∼ --></mml:mo> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>N_{sim }=N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d i m upper N minus upper N Subscript minus Baseline less-than-or-equal-to 1> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>i</mml:mi> <mml:mi>m</mml:mi> <mml:mi>N</mml:mi> <mml:mo>⊖<!-- ⊖ --></mml:mo> <mml:msub> <mml:mi>N</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>−<!-- − --></mml:mo> </mml:mrow> </mml:msub> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>dim Nominus N_{-}leq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N Subscript tilde Baseline equals upper N Subscript minus> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>N</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∼<!-- ∼ --></mml:mo> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>N</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>−<!-- − --></mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>N_{sim }=N_{-}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d i m upper N minus upper N Subscript minus Baseline equals normal infinity> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>i</mml:mi> <mml:mi>m</mml:mi> <mml:mi>N</mml:mi> <mml:mo>⊖<!-- ⊖ --></mml:mo> <mml:msub> <mml:mi>N</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>−<!-- − --></mml:mo> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>dim Nominus N_{-}=infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also proved that the Erdos Density Theorem holds in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper S> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathcal {S}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper S> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>S</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathcal {S}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is strongly reducible." @default.
- W1590186543 created "2016-06-24" @default.
- W1590186543 creator A5064891137 @default.
- W1590186543 creator A5070641856 @default.
- W1590186543 date "2002-10-01" @default.
- W1590186543 modified "2023-10-18" @default.
- W1590186543 title "Finite rank operators in closed maximal triangular algebras II" @default.
- W1590186543 cites W1985157229 @default.
- W1590186543 cites W1993181283 @default.
- W1590186543 cites W2010287251 @default.
- W1590186543 cites W2012672376 @default.
- W1590186543 cites W2168916560 @default.
- W1590186543 cites W2222545013 @default.
- W1590186543 cites W2332955181 @default.
- W1590186543 cites W4241792869 @default.
- W1590186543 cites W4250054017 @default.
- W1590186543 cites W4255057637 @default.
- W1590186543 cites W2045908835 @default.
- W1590186543 doi "https://doi.org/10.1090/s0002-9939-02-06748-5" @default.
- W1590186543 hasPublicationYear "2002" @default.
- W1590186543 type Work @default.
- W1590186543 sameAs 1590186543 @default.
- W1590186543 citedByCount "2" @default.
- W1590186543 countsByYear W15901865432022 @default.
- W1590186543 crossrefType "journal-article" @default.
- W1590186543 hasAuthorship W1590186543A5064891137 @default.
- W1590186543 hasAuthorship W1590186543A5070641856 @default.
- W1590186543 hasBestOaLocation W15901865431 @default.
- W1590186543 hasConcept C11413529 @default.
- W1590186543 hasConcept C114614502 @default.
- W1590186543 hasConcept C154945302 @default.
- W1590186543 hasConcept C164226766 @default.
- W1590186543 hasConcept C18903297 @default.
- W1590186543 hasConcept C2776321320 @default.
- W1590186543 hasConcept C2777212361 @default.
- W1590186543 hasConcept C2777299769 @default.
- W1590186543 hasConcept C33923547 @default.
- W1590186543 hasConcept C41008148 @default.
- W1590186543 hasConcept C86803240 @default.
- W1590186543 hasConceptScore W1590186543C11413529 @default.
- W1590186543 hasConceptScore W1590186543C114614502 @default.
- W1590186543 hasConceptScore W1590186543C154945302 @default.
- W1590186543 hasConceptScore W1590186543C164226766 @default.
- W1590186543 hasConceptScore W1590186543C18903297 @default.
- W1590186543 hasConceptScore W1590186543C2776321320 @default.
- W1590186543 hasConceptScore W1590186543C2777212361 @default.
- W1590186543 hasConceptScore W1590186543C2777299769 @default.
- W1590186543 hasConceptScore W1590186543C33923547 @default.
- W1590186543 hasConceptScore W1590186543C41008148 @default.
- W1590186543 hasConceptScore W1590186543C86803240 @default.
- W1590186543 hasIssue "5" @default.
- W1590186543 hasLocation W15901865431 @default.
- W1590186543 hasOpenAccess W1590186543 @default.
- W1590186543 hasPrimaryLocation W15901865431 @default.
- W1590186543 hasRelatedWork W151193258 @default.
- W1590186543 hasRelatedWork W1560139384 @default.
- W1590186543 hasRelatedWork W1982477129 @default.
- W1590186543 hasRelatedWork W2005610868 @default.
- W1590186543 hasRelatedWork W2070511061 @default.
- W1590186543 hasRelatedWork W2101026640 @default.
- W1590186543 hasRelatedWork W2327188743 @default.
- W1590186543 hasRelatedWork W2783157960 @default.
- W1590186543 hasRelatedWork W4229835465 @default.
- W1590186543 hasRelatedWork W803934970 @default.
- W1590186543 hasVolume "131" @default.
- W1590186543 isParatext "false" @default.
- W1590186543 isRetracted "false" @default.
- W1590186543 magId "1590186543" @default.
- W1590186543 workType "article" @default.