Matches in SemOpenAlex for { <https://semopenalex.org/work/W1590965573> ?p ?o ?g. }
- W1590965573 abstract "Rapid advances in high-throughput data acquisition technologies, such as microarrays and next-generation sequencing, have enabled the scientists to interrogate the expression levels of tens of thousands of genes simultaneously. However, challenges remain in developing effective computational methods for analyzing data generated from such platforms. In this dissertation, we address some of these challenges. We divide our work into two parts. In the first part, we present a suite of multivariate approaches for a reliable discovery of gene clusters, often interpreted as pathway components, from molecular profiling data with replicated measurements. We translate our goal into learning an optimal correlation structure from replicated complete and incomplete measurements. In the second part, we focus on the reconstruction of signal transduction mechanisms in the signaling pathway components. We propose gene set based approaches for inferring the structure of a signaling pathway. First, we present a constrained multivariate Gaussian model, referred to as the informed-case model, for estimating the correlation structure from replicated and complete molecular profiling data. Informed-case model generalizes previously known blind-case model by accommodating prior knowledge of replication mechanisms. Second, we generalize the blind-case model by designing a two-component mixture model. Our idea is to strike an optimal balance between a fully constrained correlation structure and an unconstrained one. Third, we develop an Expectation-Maximization algorithm to infer the underlying correlation structure from replicated molecular profiling data with missing (incomplete) measurements. We utilize our correlation estimators for clustering real-world replicated complete and incomplete molecular profiling data sets. The above three components constitute the first part of the dissertation. For the structural inference of signaling pathways, we hypothesize a directed signal pathway structure as an ensemble of overlapping and linear signal transduction events. We then propose two algorithms to reverse engineer the underlying signaling pathway structure using unordered gene sets corresponding to signal transduction events. Throughout we treat gene sets as variables and the associated gene orderings as random. The first algorithm has been developed under the Gibbs sampling framework and the second algorithm utilizes the framework of simulated annealing. Finally, we summarize our findings and discuss possible future directions. Keywords: Replicated data, incomplete data, correlation, covariance matrix, multivariate Gaussian mixture models, expectation-maximization (EM) algorithm, gene sets, Gibbs sampling, signaling pathways, signal transduction, discrete optimization, simulated annealing." @default.
- W1590965573 created "2016-06-24" @default.
- W1590965573 creator A5009256505 @default.
- W1590965573 creator A5087108082 @default.
- W1590965573 date "2011-01-01" @default.
- W1590965573 modified "2023-10-16" @default.
- W1590965573 title "Multivariate models and algorithms for systems biology" @default.
- W1590965573 cites W139767586 @default.
- W1590965573 cites W1535641839 @default.
- W1590965573 cites W1542759513 @default.
- W1590965573 cites W1543507677 @default.
- W1590965573 cites W1551713770 @default.
- W1590965573 cites W1568288633 @default.
- W1590965573 cites W1570746489 @default.
- W1590965573 cites W1601076886 @default.
- W1590965573 cites W1659842140 @default.
- W1590965573 cites W1872324379 @default.
- W1590965573 cites W1967326559 @default.
- W1590965573 cites W1970156673 @default.
- W1590965573 cites W1972441759 @default.
- W1590965573 cites W1972764318 @default.
- W1590965573 cites W1976208596 @default.
- W1590965573 cites W1977556410 @default.
- W1590965573 cites W1990512452 @default.
- W1590965573 cites W1990762193 @default.
- W1590965573 cites W2008906462 @default.
- W1590965573 cites W2009644972 @default.
- W1590965573 cites W2009707536 @default.
- W1590965573 cites W2011832962 @default.
- W1590965573 cites W2016569614 @default.
- W1590965573 cites W2019655981 @default.
- W1590965573 cites W2019997982 @default.
- W1590965573 cites W2023348596 @default.
- W1590965573 cites W2024060531 @default.
- W1590965573 cites W2024858956 @default.
- W1590965573 cites W2030907571 @default.
- W1590965573 cites W2035722698 @default.
- W1590965573 cites W2044525257 @default.
- W1590965573 cites W2045656233 @default.
- W1590965573 cites W2048298626 @default.
- W1590965573 cites W2049633694 @default.
- W1590965573 cites W2054880642 @default.
- W1590965573 cites W2055078783 @default.
- W1590965573 cites W2061680337 @default.
- W1590965573 cites W2062995227 @default.
- W1590965573 cites W2063251739 @default.
- W1590965573 cites W2064690543 @default.
- W1590965573 cites W2076372398 @default.
- W1590965573 cites W2076753758 @default.
- W1590965573 cites W2078149659 @default.
- W1590965573 cites W2088065495 @default.
- W1590965573 cites W2088926759 @default.
- W1590965573 cites W2093691792 @default.
- W1590965573 cites W2094558888 @default.
- W1590965573 cites W2094678200 @default.
- W1590965573 cites W2094791588 @default.
- W1590965573 cites W2095293504 @default.
- W1590965573 cites W2096863518 @default.
- W1590965573 cites W2097571405 @default.
- W1590965573 cites W2100637689 @default.
- W1590965573 cites W2100714130 @default.
- W1590965573 cites W2102341484 @default.
- W1590965573 cites W2103453943 @default.
- W1590965573 cites W2104475115 @default.
- W1590965573 cites W2104626344 @default.
- W1590965573 cites W2104670598 @default.
- W1590965573 cites W2105143167 @default.
- W1590965573 cites W2107311126 @default.
- W1590965573 cites W2109178214 @default.
- W1590965573 cites W2110687686 @default.
- W1590965573 cites W2112364930 @default.
- W1590965573 cites W2112534124 @default.
- W1590965573 cites W2112814716 @default.
- W1590965573 cites W2117994680 @default.
- W1590965573 cites W2118555734 @default.
- W1590965573 cites W2120261416 @default.
- W1590965573 cites W2121604817 @default.
- W1590965573 cites W2121695897 @default.
- W1590965573 cites W2122683221 @default.
- W1590965573 cites W2123496056 @default.
- W1590965573 cites W2123507042 @default.
- W1590965573 cites W2125943945 @default.
- W1590965573 cites W2126146261 @default.
- W1590965573 cites W2130410032 @default.
- W1590965573 cites W2132914434 @default.
- W1590965573 cites W2133210805 @default.
- W1590965573 cites W2134978629 @default.
- W1590965573 cites W2135187880 @default.
- W1590965573 cites W2135230352 @default.
- W1590965573 cites W2139038704 @default.
- W1590965573 cites W2139818818 @default.
- W1590965573 cites W2140209186 @default.
- W1590965573 cites W2142665387 @default.
- W1590965573 cites W2142857211 @default.
- W1590965573 cites W2142982954 @default.
- W1590965573 cites W2143076232 @default.
- W1590965573 cites W2143969914 @default.
- W1590965573 cites W2146213193 @default.
- W1590965573 cites W2146264532 @default.
- W1590965573 cites W2150473224 @default.