Matches in SemOpenAlex for { <https://semopenalex.org/work/W1591612963> ?p ?o ?g. }
- W1591612963 endingPage "e0132958" @default.
- W1591612963 startingPage "e0132958" @default.
- W1591612963 abstract "The application of machine learning techniques to psychiatric neuroimaging offers the possibility to identify robust, reliable and objective disease biomarkers both within and between contemporary syndromal diagnoses that could guide routine clinical practice. The use of quantitative methods to identify psychiatric biomarkers is consequently important, particularly with a view to making predictions relevant to individual patients, rather than at a group-level. Here, we describe predictions of treatment-refractory depression (TRD) diagnosis using structural T1-weighted brain scans obtained from twenty adult participants with TRD and 21 never depressed controls. We report 85% accuracy of individual subject diagnostic prediction. Using an automated feature selection method, the major brain regions supporting this significant classification were in the caudate, insula, habenula and periventricular grey matter. It was not, however, possible to predict the degree of 'treatment resistance' in individual patients, at least as quantified by the Massachusetts General Hospital (MGH-S) clinical staging method; but the insula was again identified as a region of interest. Structural brain imaging data alone can be used to predict diagnostic status, but not MGH-S staging, with a high degree of accuracy in patients with TRD." @default.
- W1591612963 created "2016-06-24" @default.
- W1591612963 creator A5001852870 @default.
- W1591612963 creator A5010362418 @default.
- W1591612963 creator A5022650388 @default.
- W1591612963 creator A5055301974 @default.
- W1591612963 creator A5065310720 @default.
- W1591612963 date "2015-07-17" @default.
- W1591612963 modified "2023-10-10" @default.
- W1591612963 title "Structural MRI-Based Predictions in Patients with Treatment-Refractory Depression (TRD)" @default.
- W1591612963 cites W1608380975 @default.
- W1591612963 cites W183123008 @default.
- W1591612963 cites W193366904 @default.
- W1591612963 cites W1968483037 @default.
- W1591612963 cites W1968986034 @default.
- W1591612963 cites W1970133878 @default.
- W1591612963 cites W1975535890 @default.
- W1591612963 cites W1981203691 @default.
- W1591612963 cites W1982325587 @default.
- W1591612963 cites W1984185054 @default.
- W1591612963 cites W1984615306 @default.
- W1591612963 cites W1984664241 @default.
- W1591612963 cites W1986245385 @default.
- W1591612963 cites W1987493933 @default.
- W1591612963 cites W1987647977 @default.
- W1591612963 cites W1988021126 @default.
- W1591612963 cites W1990168531 @default.
- W1591612963 cites W1993442330 @default.
- W1591612963 cites W1994345197 @default.
- W1591612963 cites W1994862345 @default.
- W1591612963 cites W1997228011 @default.
- W1591612963 cites W1999331325 @default.
- W1591612963 cites W2005648405 @default.
- W1591612963 cites W2014400330 @default.
- W1591612963 cites W2016414626 @default.
- W1591612963 cites W2016521818 @default.
- W1591612963 cites W2018333256 @default.
- W1591612963 cites W2022295595 @default.
- W1591612963 cites W2025644609 @default.
- W1591612963 cites W2032639509 @default.
- W1591612963 cites W2032715840 @default.
- W1591612963 cites W2034201320 @default.
- W1591612963 cites W2040305148 @default.
- W1591612963 cites W2054381792 @default.
- W1591612963 cites W2059217700 @default.
- W1591612963 cites W2067317682 @default.
- W1591612963 cites W2067350116 @default.
- W1591612963 cites W2069247119 @default.
- W1591612963 cites W2070828096 @default.
- W1591612963 cites W2073288993 @default.
- W1591612963 cites W2084315798 @default.
- W1591612963 cites W2084358449 @default.
- W1591612963 cites W2085020654 @default.
- W1591612963 cites W2091111179 @default.
- W1591612963 cites W2094651577 @default.
- W1591612963 cites W2094872971 @default.
- W1591612963 cites W2112140928 @default.
- W1591612963 cites W2112926087 @default.
- W1591612963 cites W2115449759 @default.
- W1591612963 cites W2116663570 @default.
- W1591612963 cites W2120364592 @default.
- W1591612963 cites W2122016047 @default.
- W1591612963 cites W2129478155 @default.
- W1591612963 cites W2135455833 @default.
- W1591612963 cites W2136022845 @default.
- W1591612963 cites W2144198011 @default.
- W1591612963 cites W2147014007 @default.
- W1591612963 cites W2148239264 @default.
- W1591612963 cites W2149402043 @default.
- W1591612963 cites W2154971711 @default.
- W1591612963 doi "https://doi.org/10.1371/journal.pone.0132958" @default.
- W1591612963 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4506147" @default.
- W1591612963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26186455" @default.
- W1591612963 hasPublicationYear "2015" @default.
- W1591612963 type Work @default.
- W1591612963 sameAs 1591612963 @default.
- W1591612963 citedByCount "49" @default.
- W1591612963 countsByYear W15916129632016 @default.
- W1591612963 countsByYear W15916129632017 @default.
- W1591612963 countsByYear W15916129632018 @default.
- W1591612963 countsByYear W15916129632019 @default.
- W1591612963 countsByYear W15916129632020 @default.
- W1591612963 countsByYear W15916129632021 @default.
- W1591612963 countsByYear W15916129632022 @default.
- W1591612963 countsByYear W15916129632023 @default.
- W1591612963 crossrefType "journal-article" @default.
- W1591612963 hasAuthorship W1591612963A5001852870 @default.
- W1591612963 hasAuthorship W1591612963A5010362418 @default.
- W1591612963 hasAuthorship W1591612963A5022650388 @default.
- W1591612963 hasAuthorship W1591612963A5055301974 @default.
- W1591612963 hasAuthorship W1591612963A5065310720 @default.
- W1591612963 hasBestOaLocation W15916129631 @default.
- W1591612963 hasConcept C104996578 @default.
- W1591612963 hasConcept C118552586 @default.
- W1591612963 hasConcept C121332964 @default.
- W1591612963 hasConcept C126838900 @default.
- W1591612963 hasConcept C139719470 @default.
- W1591612963 hasConcept C142424586 @default.