Matches in SemOpenAlex for { <https://semopenalex.org/work/W1592925889> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1592925889 abstract "Natural scenes consist of a wide variety of stochastic patterns. While many patterns are represented well by statistical models in two dimensional regions as most image segmentation work assume, some other patterns are fundamentally one dimensional and thus cause major problems in segmentation. We call the former region processes and the latter curve processes. In this paper, we propose a stochastic algorithm for parsing an image into a number of region and curve processes. The paper makes the following contributions to the literature. Firstly, it presents a generative rope model for curve processes in the form of Hidden Markov Model (HMM). The hidden layer is a Markov chain with each element being an image base selected from an over-complete basis, such as Difference of Gaussians (DOG) or Difference of Offset Gaussians (DOOG) at various scales and orientations. The rope model accounts for the geometric smoothness and photometric coherence of the curve processes. Secondly, it integrates both 2D region models, such as textures, splines etc with 1D curve models under the Bayes framework. Because both region and curve models are generative, they compete to explain input images in a layered representation. Thirdly, it achieves global optimization by effective Markov chain Monte Carlo methods in the sense of maximizing a posterior probability. The Markov chain consists of reversible jumps and diffusions driven by bottom up information. The algorithm is applied to real images with satisfactory results. We verify the results through random synthesis and compare them against segmentations with region processes only." @default.
- W1592925889 created "2016-06-24" @default.
- W1592925889 creator A5001760915 @default.
- W1592925889 creator A5052021034 @default.
- W1592925889 date "2002-01-01" @default.
- W1592925889 modified "2023-09-22" @default.
- W1592925889 title "Parsing Images into Region and Curve Processes" @default.
- W1592925889 cites W1481420047 @default.
- W1592925889 cites W1558012644 @default.
- W1592925889 cites W2038952578 @default.
- W1592925889 cites W2098152234 @default.
- W1592925889 cites W2104095591 @default.
- W1592925889 cites W2105464873 @default.
- W1592925889 cites W2106706098 @default.
- W1592925889 cites W2151693816 @default.
- W1592925889 cites W2168748350 @default.
- W1592925889 doi "https://doi.org/10.1007/3-540-47977-5_26" @default.
- W1592925889 hasPublicationYear "2002" @default.
- W1592925889 type Work @default.
- W1592925889 sameAs 1592925889 @default.
- W1592925889 citedByCount "12" @default.
- W1592925889 crossrefType "book-chapter" @default.
- W1592925889 hasAuthorship W1592925889A5001760915 @default.
- W1592925889 hasAuthorship W1592925889A5052021034 @default.
- W1592925889 hasBestOaLocation W15929258892 @default.
- W1592925889 hasConcept C11413529 @default.
- W1592925889 hasConcept C119857082 @default.
- W1592925889 hasConcept C124504099 @default.
- W1592925889 hasConcept C153180895 @default.
- W1592925889 hasConcept C154945302 @default.
- W1592925889 hasConcept C167966045 @default.
- W1592925889 hasConcept C186644900 @default.
- W1592925889 hasConcept C39890363 @default.
- W1592925889 hasConcept C41008148 @default.
- W1592925889 hasConcept C61224824 @default.
- W1592925889 hasConcept C89600930 @default.
- W1592925889 hasConcept C98763669 @default.
- W1592925889 hasConceptScore W1592925889C11413529 @default.
- W1592925889 hasConceptScore W1592925889C119857082 @default.
- W1592925889 hasConceptScore W1592925889C124504099 @default.
- W1592925889 hasConceptScore W1592925889C153180895 @default.
- W1592925889 hasConceptScore W1592925889C154945302 @default.
- W1592925889 hasConceptScore W1592925889C167966045 @default.
- W1592925889 hasConceptScore W1592925889C186644900 @default.
- W1592925889 hasConceptScore W1592925889C39890363 @default.
- W1592925889 hasConceptScore W1592925889C41008148 @default.
- W1592925889 hasConceptScore W1592925889C61224824 @default.
- W1592925889 hasConceptScore W1592925889C89600930 @default.
- W1592925889 hasConceptScore W1592925889C98763669 @default.
- W1592925889 hasLocation W15929258891 @default.
- W1592925889 hasLocation W15929258892 @default.
- W1592925889 hasLocation W15929258893 @default.
- W1592925889 hasOpenAccess W1592925889 @default.
- W1592925889 hasPrimaryLocation W15929258891 @default.
- W1592925889 hasRelatedWork W1511735281 @default.
- W1592925889 hasRelatedWork W1587244473 @default.
- W1592925889 hasRelatedWork W1598023759 @default.
- W1592925889 hasRelatedWork W2020999234 @default.
- W1592925889 hasRelatedWork W2036075184 @default.
- W1592925889 hasRelatedWork W2063266501 @default.
- W1592925889 hasRelatedWork W2105346798 @default.
- W1592925889 hasRelatedWork W2106110775 @default.
- W1592925889 hasRelatedWork W2106706098 @default.
- W1592925889 hasRelatedWork W2108284981 @default.
- W1592925889 hasRelatedWork W2133411727 @default.
- W1592925889 hasRelatedWork W2136799844 @default.
- W1592925889 hasRelatedWork W2152621450 @default.
- W1592925889 hasRelatedWork W2163719403 @default.
- W1592925889 hasRelatedWork W2165544906 @default.
- W1592925889 hasRelatedWork W2520029346 @default.
- W1592925889 hasRelatedWork W2802000924 @default.
- W1592925889 hasRelatedWork W2900170916 @default.
- W1592925889 hasRelatedWork W3113663489 @default.
- W1592925889 hasRelatedWork W1500447037 @default.
- W1592925889 isParatext "false" @default.
- W1592925889 isRetracted "false" @default.
- W1592925889 magId "1592925889" @default.
- W1592925889 workType "book-chapter" @default.