Matches in SemOpenAlex for { <https://semopenalex.org/work/W1593543504> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1593543504 abstract "We bring the theory of rough paths to the study of non-parametric statistics on streamed data. We discuss the problem of regression where the input variable is a stream of information, and the dependent response is also (potentially) a stream. A certain graded feature set of a stream, known in the rough path literature as the signature, has a universality that allows formally, linear regression to be used to characterise the functional relationship between independent explanatory variables and the conditional distribution of the dependent response. This approach, via linear regression on the signature of the stream, is almost totally general, and yet it still allows explicit computation. The grading allows truncation of the feature set and so leads to an efficient local description for streams (rough paths). In the statistical context this method offers potentially significant, even transformational dimension reduction. By way of illustration, our approach is applied to stationary time series including the familiar AR model and ARCH model. In the numerical examples we examined, our predictions achieve similar accuracy to the Gaussian Process (GP) approach with much lower computational cost especially when the sample size is large." @default.
- W1593543504 created "2016-06-24" @default.
- W1593543504 creator A5029516423 @default.
- W1593543504 creator A5033716148 @default.
- W1593543504 creator A5085730021 @default.
- W1593543504 date "2013-09-01" @default.
- W1593543504 modified "2023-10-16" @default.
- W1593543504 title "Learning from the past, predicting the statistics for the future, learning an evolving system" @default.
- W1593543504 cites W100459338 @default.
- W1593543504 cites W1746819321 @default.
- W1593543504 cites W1792076819 @default.
- W1593543504 cites W1981593978 @default.
- W1593543504 cites W1999996900 @default.
- W1593543504 cites W2045044457 @default.
- W1593543504 cites W2063593194 @default.
- W1593543504 cites W2132940048 @default.
- W1593543504 cites W2134752891 @default.
- W1593543504 cites W2159361824 @default.
- W1593543504 cites W2263098707 @default.
- W1593543504 cites W2321579306 @default.
- W1593543504 cites W2499451752 @default.
- W1593543504 cites W2803903240 @default.
- W1593543504 cites W2964143464 @default.
- W1593543504 cites W3141704984 @default.
- W1593543504 cites W378919085 @default.
- W1593543504 doi "https://doi.org/10.48550/arxiv.1309.0260" @default.
- W1593543504 hasPublicationYear "2013" @default.
- W1593543504 type Work @default.
- W1593543504 sameAs 1593543504 @default.
- W1593543504 citedByCount "38" @default.
- W1593543504 countsByYear W15935435042013 @default.
- W1593543504 countsByYear W15935435042014 @default.
- W1593543504 countsByYear W15935435042015 @default.
- W1593543504 countsByYear W15935435042016 @default.
- W1593543504 countsByYear W15935435042017 @default.
- W1593543504 countsByYear W15935435042018 @default.
- W1593543504 countsByYear W15935435042019 @default.
- W1593543504 countsByYear W15935435042020 @default.
- W1593543504 countsByYear W15935435042021 @default.
- W1593543504 crossrefType "posted-content" @default.
- W1593543504 hasAuthorship W1593543504A5029516423 @default.
- W1593543504 hasAuthorship W1593543504A5033716148 @default.
- W1593543504 hasAuthorship W1593543504A5085730021 @default.
- W1593543504 hasBestOaLocation W15935435041 @default.
- W1593543504 hasConcept C105795698 @default.
- W1593543504 hasConcept C11413529 @default.
- W1593543504 hasConcept C119857082 @default.
- W1593543504 hasConcept C121332964 @default.
- W1593543504 hasConcept C124101348 @default.
- W1593543504 hasConcept C154945302 @default.
- W1593543504 hasConcept C163716315 @default.
- W1593543504 hasConcept C33923547 @default.
- W1593543504 hasConcept C41008148 @default.
- W1593543504 hasConcept C48921125 @default.
- W1593543504 hasConcept C61326573 @default.
- W1593543504 hasConcept C62520636 @default.
- W1593543504 hasConceptScore W1593543504C105795698 @default.
- W1593543504 hasConceptScore W1593543504C11413529 @default.
- W1593543504 hasConceptScore W1593543504C119857082 @default.
- W1593543504 hasConceptScore W1593543504C121332964 @default.
- W1593543504 hasConceptScore W1593543504C124101348 @default.
- W1593543504 hasConceptScore W1593543504C154945302 @default.
- W1593543504 hasConceptScore W1593543504C163716315 @default.
- W1593543504 hasConceptScore W1593543504C33923547 @default.
- W1593543504 hasConceptScore W1593543504C41008148 @default.
- W1593543504 hasConceptScore W1593543504C48921125 @default.
- W1593543504 hasConceptScore W1593543504C61326573 @default.
- W1593543504 hasConceptScore W1593543504C62520636 @default.
- W1593543504 hasLocation W15935435041 @default.
- W1593543504 hasOpenAccess W1593543504 @default.
- W1593543504 hasPrimaryLocation W15935435041 @default.
- W1593543504 hasRelatedWork W1974771004 @default.
- W1593543504 hasRelatedWork W1984680919 @default.
- W1593543504 hasRelatedWork W2114381759 @default.
- W1593543504 hasRelatedWork W2337187786 @default.
- W1593543504 hasRelatedWork W2735839103 @default.
- W1593543504 hasRelatedWork W2783038087 @default.
- W1593543504 hasRelatedWork W3043987701 @default.
- W1593543504 hasRelatedWork W3088872608 @default.
- W1593543504 hasRelatedWork W4286698618 @default.
- W1593543504 hasRelatedWork W2481470197 @default.
- W1593543504 isParatext "false" @default.
- W1593543504 isRetracted "false" @default.
- W1593543504 magId "1593543504" @default.
- W1593543504 workType "article" @default.