Matches in SemOpenAlex for { <https://semopenalex.org/work/W1593907419> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1593907419 abstract "A Chernoff and Savage theorem on the asymptotic normality of 2-sample linear rank statistics is here established for random sample sizes. The proof parallels that of Pyke and Shorack (1968), hereafter referred to as PS. A mild restriction on the underlying distributions is needed in the present situation. A result of Pyke (1968) on the weak convergence of the 1-sample empirical process for random sample sizes in the ordinary uniform metric is here extended to other metrics. This extension provides an essential step in the present proof and is also of separate interest. The results extend immediately to $c$-samples." @default.
- W1593907419 created "2016-06-24" @default.
- W1593907419 creator A5006182120 @default.
- W1593907419 creator A5049742884 @default.
- W1593907419 date "1968-10-01" @default.
- W1593907419 modified "2023-09-29" @default.
- W1593907419 title "Weak Convergence and a Chernoff-Savage Theorem for Random Sample Sizes" @default.
- W1593907419 cites W1614609926 @default.
- W1593907419 cites W1965972399 @default.
- W1593907419 cites W1988987700 @default.
- W1593907419 cites W1999538654 @default.
- W1593907419 cites W2010731048 @default.
- W1593907419 cites W2021097403 @default.
- W1593907419 cites W2130022637 @default.
- W1593907419 cites W2168479023 @default.
- W1593907419 cites W3092849399 @default.
- W1593907419 cites W416373957 @default.
- W1593907419 doi "https://doi.org/10.1214/aoms/1177698149" @default.
- W1593907419 hasPublicationYear "1968" @default.
- W1593907419 type Work @default.
- W1593907419 sameAs 1593907419 @default.
- W1593907419 citedByCount "18" @default.
- W1593907419 countsByYear W15939074192014 @default.
- W1593907419 crossrefType "journal-article" @default.
- W1593907419 hasAuthorship W1593907419A5006182120 @default.
- W1593907419 hasAuthorship W1593907419A5049742884 @default.
- W1593907419 hasBestOaLocation W15939074191 @default.
- W1593907419 hasConcept C105795698 @default.
- W1593907419 hasConcept C114614502 @default.
- W1593907419 hasConcept C119047807 @default.
- W1593907419 hasConcept C122123141 @default.
- W1593907419 hasConcept C129848803 @default.
- W1593907419 hasConcept C185429906 @default.
- W1593907419 hasConcept C185592680 @default.
- W1593907419 hasConcept C198531522 @default.
- W1593907419 hasConcept C28826006 @default.
- W1593907419 hasConcept C33923547 @default.
- W1593907419 hasConcept C38652104 @default.
- W1593907419 hasConcept C41008148 @default.
- W1593907419 hasConcept C43617362 @default.
- W1593907419 hasConcept C57945734 @default.
- W1593907419 hasConcept C65778772 @default.
- W1593907419 hasConcept C76178495 @default.
- W1593907419 hasConcept C95763700 @default.
- W1593907419 hasConceptScore W1593907419C105795698 @default.
- W1593907419 hasConceptScore W1593907419C114614502 @default.
- W1593907419 hasConceptScore W1593907419C119047807 @default.
- W1593907419 hasConceptScore W1593907419C122123141 @default.
- W1593907419 hasConceptScore W1593907419C129848803 @default.
- W1593907419 hasConceptScore W1593907419C185429906 @default.
- W1593907419 hasConceptScore W1593907419C185592680 @default.
- W1593907419 hasConceptScore W1593907419C198531522 @default.
- W1593907419 hasConceptScore W1593907419C28826006 @default.
- W1593907419 hasConceptScore W1593907419C33923547 @default.
- W1593907419 hasConceptScore W1593907419C38652104 @default.
- W1593907419 hasConceptScore W1593907419C41008148 @default.
- W1593907419 hasConceptScore W1593907419C43617362 @default.
- W1593907419 hasConceptScore W1593907419C57945734 @default.
- W1593907419 hasConceptScore W1593907419C65778772 @default.
- W1593907419 hasConceptScore W1593907419C76178495 @default.
- W1593907419 hasConceptScore W1593907419C95763700 @default.
- W1593907419 hasLocation W15939074191 @default.
- W1593907419 hasLocation W15939074192 @default.
- W1593907419 hasOpenAccess W1593907419 @default.
- W1593907419 hasPrimaryLocation W15939074191 @default.
- W1593907419 hasRelatedWork W1964306900 @default.
- W1593907419 hasRelatedWork W1968593861 @default.
- W1593907419 hasRelatedWork W1973107011 @default.
- W1593907419 hasRelatedWork W1988987700 @default.
- W1593907419 hasRelatedWork W1990449571 @default.
- W1593907419 hasRelatedWork W1992722272 @default.
- W1593907419 hasRelatedWork W1998035475 @default.
- W1593907419 hasRelatedWork W1999538654 @default.
- W1593907419 hasRelatedWork W2005825929 @default.
- W1593907419 hasRelatedWork W2037050852 @default.
- W1593907419 hasRelatedWork W2049766443 @default.
- W1593907419 hasRelatedWork W2065230098 @default.
- W1593907419 hasRelatedWork W2085782272 @default.
- W1593907419 hasRelatedWork W2236695997 @default.
- W1593907419 hasRelatedWork W2323863961 @default.
- W1593907419 hasRelatedWork W2701805231 @default.
- W1593907419 hasRelatedWork W2952643291 @default.
- W1593907419 hasRelatedWork W2981930417 @default.
- W1593907419 hasRelatedWork W384101425 @default.
- W1593907419 hasRelatedWork W92530248 @default.
- W1593907419 isParatext "false" @default.
- W1593907419 isRetracted "false" @default.
- W1593907419 magId "1593907419" @default.
- W1593907419 workType "article" @default.