Matches in SemOpenAlex for { <https://semopenalex.org/work/W1594896360> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1594896360 endingPage "4454" @default.
- W1594896360 startingPage "4421" @default.
- W1594896360 abstract "Let<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G><mml:semantics><mml:mi>G</mml:mi><mml:annotation encoding=application/x-tex>G</mml:annotation></mml:semantics></mml:math></inline-formula>be a semisimple simply connected algebraic group defined and split over the field<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper F Subscript p><mml:semantics><mml:msub><mml:mrow class=MJX-TeXAtom-ORD><mml:mrow class=MJX-TeXAtom-ORD><mml:mi mathvariant=double-struck>F</mml:mi></mml:mrow></mml:mrow><mml:mi>p</mml:mi></mml:msub><mml:annotation encoding=application/x-tex>{mathbb {F}}_p</mml:annotation></mml:semantics></mml:math></inline-formula>with<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p><mml:semantics><mml:mi>p</mml:mi><mml:annotation encoding=application/x-tex>p</mml:annotation></mml:semantics></mml:math></inline-formula>elements, let<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G left-parenthesis double-struck upper F Subscript q Baseline right-parenthesis><mml:semantics><mml:mrow><mml:mi>G</mml:mi><mml:mo stretchy=false>(</mml:mo><mml:msub><mml:mrow class=MJX-TeXAtom-ORD><mml:mi mathvariant=double-struck>F</mml:mi></mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>G(mathbb {F}_{q})</mml:annotation></mml:semantics></mml:math></inline-formula>be the finite Chevalley group consisting of the<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper F Subscript q><mml:semantics><mml:msub><mml:mrow class=MJX-TeXAtom-ORD><mml:mrow class=MJX-TeXAtom-ORD><mml:mi mathvariant=double-struck>F</mml:mi></mml:mrow></mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:annotation encoding=application/x-tex>{mathbb {F}}_{q}</mml:annotation></mml:semantics></mml:math></inline-formula>-rational points of<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G><mml:semantics><mml:mi>G</mml:mi><mml:annotation encoding=application/x-tex>G</mml:annotation></mml:semantics></mml:math></inline-formula>where<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=q equals p Superscript r><mml:semantics><mml:mrow><mml:mi>q</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mi>p</mml:mi><mml:mi>r</mml:mi></mml:msup></mml:mrow><mml:annotation encoding=application/x-tex>q = p^r</mml:annotation></mml:semantics></mml:math></inline-formula>, and let<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G Subscript r><mml:semantics><mml:msub><mml:mi>G</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>r</mml:mi></mml:mrow></mml:msub><mml:annotation encoding=application/x-tex>G_{r}</mml:annotation></mml:semantics></mml:math></inline-formula>be the<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=r><mml:semantics><mml:mi>r</mml:mi><mml:annotation encoding=application/x-tex>r</mml:annotation></mml:semantics></mml:math></inline-formula>th Frobenius kernel. The purpose of this paper is to relate extensions between modules in<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=Mod left-parenthesis upper G left-parenthesis double-struck upper F Subscript q Baseline right-parenthesis right-parenthesis><mml:semantics><mml:mrow><mml:mtext>Mod</mml:mtext><mml:mo stretchy=false>(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=false>(</mml:mo><mml:msub><mml:mrow class=MJX-TeXAtom-ORD><mml:mi mathvariant=double-struck>F</mml:mi></mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=false>)</mml:mo><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>text {Mod}(G(mathbb {F}_{q}))</mml:annotation></mml:semantics></mml:math></inline-formula>and<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=Mod left-parenthesis upper G Subscript r Baseline right-parenthesis><mml:semantics><mml:mrow><mml:mtext>Mod</mml:mtext><mml:mo stretchy=false>(</mml:mo><mml:msub><mml:mi>G</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>r</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>text {Mod}(G_{r})</mml:annotation></mml:semantics></mml:math></inline-formula>with extensions between modules in<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=Mod left-parenthesis upper G right-parenthesis><mml:semantics><mml:mrow><mml:mtext>Mod</mml:mtext><mml:mo stretchy=false>(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>text {Mod}(G)</mml:annotation></mml:semantics></mml:math></inline-formula>. Among the results obtained are the following: for<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=r greater-than 2><mml:semantics><mml:mrow><mml:mi>r</mml:mi><mml:mo>></mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:annotation encoding=application/x-tex>r >2</mml:annotation></mml:semantics></mml:math></inline-formula>and<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than-or-equal-to 3 left-parenthesis h minus 1 right-parenthesis><mml:semantics><mml:mrow><mml:mi>p</mml:mi><mml:mo>≥<!-- ≥ --></mml:mo><mml:mn>3</mml:mn><mml:mo stretchy=false>(</mml:mo><mml:mi>h</mml:mi><mml:mo>−<!-- − --></mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>pgeq 3(h-1)</mml:annotation></mml:semantics></mml:math></inline-formula>, the<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G left-parenthesis double-struck upper F Subscript q Baseline right-parenthesis><mml:semantics><mml:mrow><mml:mi>G</mml:mi><mml:mo stretchy=false>(</mml:mo><mml:msub><mml:mrow class=MJX-TeXAtom-ORD><mml:mi mathvariant=double-struck>F</mml:mi></mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>G(mathbb {F}_{q})</mml:annotation></mml:semantics></mml:math></inline-formula>-extensions between two simple<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G left-parenthesis double-struck upper F Subscript q Baseline right-parenthesis><mml:semantics><mml:mrow><mml:mi>G</mml:mi><mml:mo stretchy=false>(</mml:mo><mml:msub><mml:mrow class=MJX-TeXAtom-ORD><mml:mi mathvariant=double-struck>F</mml:mi></mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>G(mathbb {F}_{q})</mml:annotation></mml:semantics></mml:math></inline-formula>-modules are isomorphic to the<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G><mml:semantics><mml:mi>G</mml:mi><mml:annotation encoding=application/x-tex>G</mml:annotation></mml:semantics></mml:math></inline-formula>-extensions between two simple<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p Superscript r><mml:semantics><mml:msup><mml:mi>p</mml:mi><mml:mi>r</mml:mi></mml:msup><mml:annotation encoding=application/x-tex>p^r</mml:annotation></mml:semantics></mml:math></inline-formula>-restricted<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G><mml:semantics><mml:mi>G</mml:mi><mml:annotation encoding=application/x-tex>G</mml:annotation></mml:semantics></mml:math></inline-formula>-modules with suitably “twisted highest weights. For<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than-or-equal-to 3 left-parenthesis h minus 1 right-parenthesis><mml:semantics><mml:mrow><mml:mi>p</mml:mi><mml:mo>≥<!-- ≥ --></mml:mo><mml:mn>3</mml:mn><mml:mo stretchy=false>(</mml:mo><mml:mi>h</mml:mi><mml:mo>−<!-- − --></mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>p geq 3(h-1)</mml:annotation></mml:semantics></mml:math></inline-formula>, we provide a complete characterization of<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript 1 Baseline left-parenthesis upper G left-parenthesis double-struck upper F Subscript q Baseline right-parenthesis comma upper H Superscript 0 Baseline left-parenthesis lamda right-parenthesis right-parenthesis><mml:semantics><mml:mrow><mml:msup><mml:mtext>H</mml:mtext><mml:mrow class=MJX-TeXAtom-ORD><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=false>(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=false>(</mml:mo><mml:msub><mml:mrow class=MJX-TeXAtom-ORD><mml:mi mathvariant=double-struck>F</mml:mi></mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=false>)</mml:mo><mml:mo>,</mml:mo><mml:msup><mml:mi>H</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=false>(</mml:mo><mml:mi>λ<!-- λ --></mml:mi><mml:mo stretchy=false>)</mml:mo><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>text {H}^{1}(G(mathbb {F}_{q}),H^{0}(lambda ))</mml:annotation></mml:semantics></mml:math></inline-formula>where<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript 0 Baseline left-parenthesis lamda right-parenthesis equals ind Subscript upper B Superscript upper G Baseline lamda><mml:semantics><mml:mrow><mml:msup><mml:mi>H</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=false>(</mml:mo><mml:mi>λ<!-- λ --></mml:mi><mml:mo stretchy=false>)</mml:mo><mml:mo>=</mml:mo><mml:msubsup><mml:mtext>ind</mml:mtext><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>B</mml:mi></mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>G</mml:mi></mml:mrow></mml:msubsup><mml:mtext> </mml:mtext><mml:mi>λ<!-- λ --></mml:mi></mml:mrow><mml:annotation encoding=application/x-tex>H^{0}(lambda )=text {ind}_{B}^{G} lambda</mml:annotation></mml:semantics></mml:math></inline-formula>and<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=lamda><mml:semantics><mml:mi>λ<!-- λ --></mml:mi><mml:annotation encoding=application/x-tex>lambda</mml:annotation></mml:semantics></mml:math></inline-formula>is<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p Superscript r><mml:semantics><mml:msup><mml:mi>p</mml:mi><mml:mi>r</mml:mi></mml:msup><mml:annotation encoding=application/x-tex>p^r</mml:annotation></mml:semantics></mml:math></inline-formula>-restricted. Furthermore, for<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than-or-equal-to 3 left-parenthesis h minus 1 right-parenthesis><mml:semantics><mml:mrow><mml:mi>p</mml:mi><mml:mo>≥<!-- ≥ --></mml:mo><mml:mn>3</mml:mn><mml:mo stretchy=false>(</mml:mo><mml:mi>h</mml:mi><mml:mo>−<!-- − --></mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>p geq 3(h-1)</mml:annotation></mml:semantics></mml:math></inline-formula>, necessary and sufficient bounds on the size of the highest weight of a<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G><mml:semantics><mml:mi>G</mml:mi><mml:annotation encoding=application/x-tex>G</mml:annotation></mml:semantics></mml:math></inline-formula>-module<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper V><mml:semantics><mml:mi>V</mml:mi><mml:annotation encoding=application/x-tex>V</mml:annotation></mml:semantics></mml:math></inline-formula>are given to insure that the restriction map<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper H Superscript 1 Baseline left-parenthesis upper G comma upper V right-parenthesis right-arrow normal upper H Superscript 1 Baseline left-parenthesis upper G left-parenthesis double-struck upper F Subscript q Baseline right-parenthesis comma upper V right-parenthesis><mml:semantics><mml:mrow><mml:msup><mml:mi mathvariant=normal>H</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo><!-- --></mml:mo><mml:mo stretchy=false>(</mml:mo><mml:mi>G</mml:mi><mml:mo>,</mml:mo><mml:mi>V</mml:mi><mml:mo stretchy=false>)</mml:mo><mml:mo stretchy=false>→<!-- → --></mml:mo><mml:msup><mml:mi mathvariant=normal>H</mml:mi><mml:mrow class=MJX-TeXAtom-ORD><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo><!-- --></mml:mo><mml:mo stretchy=false>(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=false>(</mml:mo><mml:msub><mml:mrow class=MJX-TeXAtom-ORD><mml:mi mathvariant=double-struck>F</mml:mi></mml:mrow><mml:mrow class=MJX-TeXAtom-ORD><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=false>)</mml:mo><mml:mo>,</mml:mo><mml:mi>V</mml:mi><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:annotation encoding=application/x-tex>operatorname {H}^{1}(G,V)rightarrow operatorname {H}^{1}(G(mathbb {F}_{q}),V)</mml:annotation></mml:semantics></mml:math></inline-formula>is an isomorphism. Finally, it is shown that the extensions between two simple<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p Superscript r><mml:semantics><mml:msup><mml:mi>p</mml:mi><mml:mi>r</mml:mi></mml:msup><mml:annotation encoding=application/x-tex>p^r</mml:annotation></mml:semantics></mml:math></inline-formula>-restricted<inline-formula content-type=math/mathml><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G><mml:semantics><mml:mi>G</mml:mi><mml:annotation encoding=application/x-tex>G</mml:annotation></mml:semantics></mml:math></inline-formula>-modules coincide in all three categories provided the highest weights are “close together." @default.
- W1594896360 created "2016-06-24" @default.
- W1594896360 creator A5004781563 @default.
- W1594896360 creator A5023731921 @default.
- W1594896360 creator A5072379484 @default.
- W1594896360 date "2002-07-02" @default.
- W1594896360 modified "2023-10-16" @default.
- W1594896360 title "Extensions for finite Chevalley groups II" @default.
- W1594896360 cites W1594896360 @default.
- W1594896360 cites W1955936458 @default.
- W1594896360 cites W1972410551 @default.
- W1594896360 cites W1992941862 @default.
- W1594896360 cites W1999853874 @default.
- W1594896360 cites W2020948209 @default.
- W1594896360 cites W2032600562 @default.
- W1594896360 cites W204441696 @default.
- W1594896360 cites W2048670379 @default.
- W1594896360 cites W2049370994 @default.
- W1594896360 cites W2058189502 @default.
- W1594896360 cites W2063233565 @default.
- W1594896360 cites W2090557263 @default.
- W1594896360 cites W2109105458 @default.
- W1594896360 cites W2118021903 @default.
- W1594896360 cites W2119895559 @default.
- W1594896360 cites W2142627627 @default.
- W1594896360 cites W592227 @default.
- W1594896360 doi "https://doi.org/10.1090/s0002-9947-02-03073-8" @default.
- W1594896360 hasPublicationYear "2002" @default.
- W1594896360 type Work @default.
- W1594896360 sameAs 1594896360 @default.
- W1594896360 citedByCount "14" @default.
- W1594896360 countsByYear W15948963602012 @default.
- W1594896360 countsByYear W15948963602013 @default.
- W1594896360 countsByYear W15948963602014 @default.
- W1594896360 countsByYear W15948963602017 @default.
- W1594896360 crossrefType "journal-article" @default.
- W1594896360 hasAuthorship W1594896360A5004781563 @default.
- W1594896360 hasAuthorship W1594896360A5023731921 @default.
- W1594896360 hasAuthorship W1594896360A5072379484 @default.
- W1594896360 hasBestOaLocation W15948963601 @default.
- W1594896360 hasConcept C11413529 @default.
- W1594896360 hasConcept C154945302 @default.
- W1594896360 hasConcept C2776321320 @default.
- W1594896360 hasConcept C33923547 @default.
- W1594896360 hasConcept C41008148 @default.
- W1594896360 hasConceptScore W1594896360C11413529 @default.
- W1594896360 hasConceptScore W1594896360C154945302 @default.
- W1594896360 hasConceptScore W1594896360C2776321320 @default.
- W1594896360 hasConceptScore W1594896360C33923547 @default.
- W1594896360 hasConceptScore W1594896360C41008148 @default.
- W1594896360 hasIssue "11" @default.
- W1594896360 hasLocation W15948963601 @default.
- W1594896360 hasOpenAccess W1594896360 @default.
- W1594896360 hasPrimaryLocation W15948963601 @default.
- W1594896360 hasRelatedWork W151193258 @default.
- W1594896360 hasRelatedWork W1529400504 @default.
- W1594896360 hasRelatedWork W1871911958 @default.
- W1594896360 hasRelatedWork W1892467659 @default.
- W1594896360 hasRelatedWork W2348710178 @default.
- W1594896360 hasRelatedWork W2808586768 @default.
- W1594896360 hasRelatedWork W2998403542 @default.
- W1594896360 hasRelatedWork W3201926073 @default.
- W1594896360 hasRelatedWork W38394648 @default.
- W1594896360 hasRelatedWork W73525116 @default.
- W1594896360 hasVolume "354" @default.
- W1594896360 isParatext "false" @default.
- W1594896360 isRetracted "false" @default.
- W1594896360 magId "1594896360" @default.
- W1594896360 workType "article" @default.