Matches in SemOpenAlex for { <https://semopenalex.org/work/W1595882092> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W1595882092 endingPage "400" @default.
- W1595882092 startingPage "396" @default.
- W1595882092 abstract "AbstractA very fast (- 10 psec) laser light source has been constructed which can be used tomake shadowgraph, interferometry, and other diagnostic photographs useful in laser fusionstudies. To produce this pulsed light source, a portion of the 100 psec main Nd:glasslaser pulse is split off, sent through CS2 cells to produce a frequency chirp, and thenoptically compressed by diffraction gratings. By frequency converting the output pulse,one can perform studies at frequencies other than the fundamental (i.e., harmonic orRaman -shifted frequencies). The compressed pulse is absolutely time -synchronized with themain laser pulse. Shadowgrams taken using this technique are shown.IntroductionA very important diagnostic technique in laser fusion studies is the use ofsubnanosecond optical observations of laser produced plasmas. Optical techniques utilizinga pulsed light source such as shadowgraphy, Schlieren photography, and interferometry l'2 have proven particularly valuable for measuring the plasma density, shape, and velocity;while the Faraday rotations method has been used to measure the magnetic field generatedin the plasma. These plasmas often have velocities greater than 107 cm /sec, densitiesgreater than 1021 particles /cm3, and steep density gradients, particularly in the vicinityof the critical surface. Thus the use of such techniques usually requires a spatial -resolution of less than 10 u.m and a time -resolution of less than 10 picosec.In this paper we describe a technique by which a very short light pulse can be producedby compressing a portion of the main laser pulse.4 Moreover, the frequency of thecompressed pulse can be modified to serve a particular diagnostic purpose. Although atechnique of synchronizing two independent oscillators to within 100 psec has beenreported, the pulse compression system has the advantage that the probe light signal isabsolutely time -synchronized with the main laser pulse, and has a pulse duration shortenough to prevent time -smearing in the photograph.Pulse CompressionThe technique of pulse compression to reduce optical pulse duration and increase laserpeak power has been used for some time. 8'7 In this technique a relatively long laserpulse is passed through a liquid with a large nonlinear index of refraction to produce afrequency ; i.e., an actual optical carrier frequency variation within a singlelaser pulse. The chirped pulse can then be temporally compressed by passing it through apair of diffraction gratings.° Compression will take place if those frequencies thatappear earliest in the long pulse are forced to undergo the greatest delay. This isindicated in Fig. 1 where an incoming chirped pulse of FWHM duration At is dispersed sothat the higher frequency component (wo + Aw) is seen to follow a shorter path (AS) afterreflection from the second grating than the lower frequency component (wo - Aw), whichappeared earlier in the incident pulse. The recollimated exiting beam is then time -compressed to width Atc « At if the chirp bandwidth is large and if AS - c(At - Atc),The frequency chirp with initial pulsewidths up to about 100 psec is best produced byself phase modulation in a liquid with a high nonlinear index of refraction,i.e., for CS2n2 = 1.3 x 10 -11 esu. For example, an intense laser pulse passing through a CS2 cell under-goes self phase modulation, which results in an instantaneous frequency displacementfrom the original laser frequency given byHere" @default.
- W1595882092 created "2016-06-24" @default.
- W1595882092 creator A5020992507 @default.
- W1595882092 creator A5046263196 @default.
- W1595882092 creator A5047805215 @default.
- W1595882092 creator A5048893322 @default.
- W1595882092 creator A5060577467 @default.
- W1595882092 creator A5062929976 @default.
- W1595882092 date "1977-09-14" @default.
- W1595882092 modified "2023-09-23" @default.
- W1595882092 title "Shadowgraph And Interferometry Experiments With A Ten-Picosecond Light Source At Various Wavelengths" @default.
- W1595882092 doi "https://doi.org/10.1117/12.955250" @default.
- W1595882092 hasPublicationYear "1977" @default.
- W1595882092 type Work @default.
- W1595882092 sameAs 1595882092 @default.
- W1595882092 citedByCount "0" @default.
- W1595882092 crossrefType "journal-article" @default.
- W1595882092 hasAuthorship W1595882092A5020992507 @default.
- W1595882092 hasAuthorship W1595882092A5046263196 @default.
- W1595882092 hasAuthorship W1595882092A5047805215 @default.
- W1595882092 hasAuthorship W1595882092A5048893322 @default.
- W1595882092 hasAuthorship W1595882092A5060577467 @default.
- W1595882092 hasAuthorship W1595882092A5062929976 @default.
- W1595882092 hasConcept C120665830 @default.
- W1595882092 hasConcept C121332964 @default.
- W1595882092 hasConcept C166689943 @default.
- W1595882092 hasConcept C192562407 @default.
- W1595882092 hasConcept C24908513 @default.
- W1595882092 hasConcept C2778260026 @default.
- W1595882092 hasConcept C2780167933 @default.
- W1595882092 hasConcept C520434653 @default.
- W1595882092 hasConcept C6260449 @default.
- W1595882092 hasConcept C94915269 @default.
- W1595882092 hasConceptScore W1595882092C120665830 @default.
- W1595882092 hasConceptScore W1595882092C121332964 @default.
- W1595882092 hasConceptScore W1595882092C166689943 @default.
- W1595882092 hasConceptScore W1595882092C192562407 @default.
- W1595882092 hasConceptScore W1595882092C24908513 @default.
- W1595882092 hasConceptScore W1595882092C2778260026 @default.
- W1595882092 hasConceptScore W1595882092C2780167933 @default.
- W1595882092 hasConceptScore W1595882092C520434653 @default.
- W1595882092 hasConceptScore W1595882092C6260449 @default.
- W1595882092 hasConceptScore W1595882092C94915269 @default.
- W1595882092 hasLocation W15958820921 @default.
- W1595882092 hasOpenAccess W1595882092 @default.
- W1595882092 hasPrimaryLocation W15958820921 @default.
- W1595882092 hasRelatedWork W1919711747 @default.
- W1595882092 hasRelatedWork W1978704122 @default.
- W1595882092 hasRelatedWork W1988002313 @default.
- W1595882092 hasRelatedWork W2063158514 @default.
- W1595882092 hasRelatedWork W2084899529 @default.
- W1595882092 hasRelatedWork W2152882139 @default.
- W1595882092 hasRelatedWork W2156349582 @default.
- W1595882092 hasRelatedWork W2170725312 @default.
- W1595882092 hasRelatedWork W2184222624 @default.
- W1595882092 hasRelatedWork W2198259273 @default.
- W1595882092 hasRelatedWork W2243201274 @default.
- W1595882092 hasRelatedWork W2275068901 @default.
- W1595882092 hasRelatedWork W2325689840 @default.
- W1595882092 hasRelatedWork W2369163832 @default.
- W1595882092 hasRelatedWork W3109242147 @default.
- W1595882092 hasRelatedWork W3148496167 @default.
- W1595882092 hasRelatedWork W1654250866 @default.
- W1595882092 hasRelatedWork W2755615832 @default.
- W1595882092 hasRelatedWork W2874278806 @default.
- W1595882092 hasRelatedWork W2928109652 @default.
- W1595882092 hasVolume "0097" @default.
- W1595882092 isParatext "false" @default.
- W1595882092 isRetracted "false" @default.
- W1595882092 magId "1595882092" @default.
- W1595882092 workType "article" @default.