Matches in SemOpenAlex for { <https://semopenalex.org/work/W1596398145> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W1596398145 abstract "This thesis presents novel applications of Artificial Intelligence-based algorithms to Failure Detection Systems. It shows the benefits intelligent, adaptive blocks can provide along with potential pitfalls. A new fault detection structure is introduced which has desirable properties when dealing with missing data, or data corrupted by extraneous disturbances. A classical alarm generation procedure is extended by transformation into an optimum, real-time, adaptive block. Two techniques, artificial Neural Networks, and Partial Least Squares, complement each other in one of the failure detection applications exploiting their respective non-linear and de-correlation strengths. Artificial Intelligence techniques are compared side by side with classical approaches and the results are analyzed. Three practical examples are examined: The Static Security Assessment of Electric Power Systems, the Oil Leak Detection in Underground Power Cables, and the Stator Overheating Detector. These case studies are demonstrated since each one represents a class of failure detection problems. The Static Security Assessment of Electric Power Systems is a class of problems with inputs which are somewhat correlated, and which has very little learning data. While the time required for the system to learn is not a concern, the recall time must be short, providing for real-time performance. The Oil Leak Detection in Underground Power Cables represents the class of problems where one has vast amounts of data indicative of a properly functioning system, however data from a failed system are very sparse. Unlike the Static Security Assessment problem, the oil leak detector has to consider the time dynamics of the system. Special provisions must be made to accommodate missing data which would interrupt contiguous data sets required for proper operation. This case study shows ways to exploit the slight sensor redundancy in order to detect sensor breakdown along with the detection of the main system failure. A third class of problems is showcased by the Electric Generator Stator Overheating detector. This application must deal with highly correlated inputs, along with the lack of fault data to be used for learning. Physical system non-linearities as well as time dynamics must also be addressed." @default.
- W1596398145 created "2016-06-24" @default.
- W1596398145 creator A5016810139 @default.
- W1596398145 creator A5048857636 @default.
- W1596398145 date "2004-01-01" @default.
- W1596398145 modified "2023-09-23" @default.
- W1596398145 title "Artificial intelligence techniques applied to fault detection systems" @default.
- W1596398145 hasPublicationYear "2004" @default.
- W1596398145 type Work @default.
- W1596398145 sameAs 1596398145 @default.
- W1596398145 citedByCount "1" @default.
- W1596398145 countsByYear W15963981452017 @default.
- W1596398145 crossrefType "dissertation" @default.
- W1596398145 hasAuthorship W1596398145A5016810139 @default.
- W1596398145 hasAuthorship W1596398145A5048857636 @default.
- W1596398145 hasConcept C121332964 @default.
- W1596398145 hasConcept C127413603 @default.
- W1596398145 hasConcept C152745839 @default.
- W1596398145 hasConcept C154945302 @default.
- W1596398145 hasConcept C163258240 @default.
- W1596398145 hasConcept C172707124 @default.
- W1596398145 hasConcept C2524010 @default.
- W1596398145 hasConcept C2777210771 @default.
- W1596398145 hasConcept C33923547 @default.
- W1596398145 hasConcept C41008148 @default.
- W1596398145 hasConcept C50644808 @default.
- W1596398145 hasConcept C62520636 @default.
- W1596398145 hasConcept C89227174 @default.
- W1596398145 hasConceptScore W1596398145C121332964 @default.
- W1596398145 hasConceptScore W1596398145C127413603 @default.
- W1596398145 hasConceptScore W1596398145C152745839 @default.
- W1596398145 hasConceptScore W1596398145C154945302 @default.
- W1596398145 hasConceptScore W1596398145C163258240 @default.
- W1596398145 hasConceptScore W1596398145C172707124 @default.
- W1596398145 hasConceptScore W1596398145C2524010 @default.
- W1596398145 hasConceptScore W1596398145C2777210771 @default.
- W1596398145 hasConceptScore W1596398145C33923547 @default.
- W1596398145 hasConceptScore W1596398145C41008148 @default.
- W1596398145 hasConceptScore W1596398145C50644808 @default.
- W1596398145 hasConceptScore W1596398145C62520636 @default.
- W1596398145 hasConceptScore W1596398145C89227174 @default.
- W1596398145 hasOpenAccess W1596398145 @default.
- W1596398145 hasRelatedWork W1977166564 @default.
- W1596398145 hasRelatedWork W1984282670 @default.
- W1596398145 hasRelatedWork W2094647618 @default.
- W1596398145 hasRelatedWork W2095125888 @default.
- W1596398145 hasRelatedWork W2100194594 @default.
- W1596398145 hasRelatedWork W2111006060 @default.
- W1596398145 hasRelatedWork W2113680010 @default.
- W1596398145 hasRelatedWork W2123095348 @default.
- W1596398145 hasRelatedWork W2132479975 @default.
- W1596398145 hasRelatedWork W2132756795 @default.
- W1596398145 hasRelatedWork W2136395567 @default.
- W1596398145 hasRelatedWork W2141931760 @default.
- W1596398145 hasRelatedWork W2283153924 @default.
- W1596398145 hasRelatedWork W2509865514 @default.
- W1596398145 hasRelatedWork W2522994198 @default.
- W1596398145 hasRelatedWork W2593576976 @default.
- W1596398145 hasRelatedWork W2958868949 @default.
- W1596398145 hasRelatedWork W2960133989 @default.
- W1596398145 hasRelatedWork W2969436071 @default.
- W1596398145 hasRelatedWork W2162892036 @default.
- W1596398145 isParatext "false" @default.
- W1596398145 isRetracted "false" @default.
- W1596398145 magId "1596398145" @default.
- W1596398145 workType "dissertation" @default.