Matches in SemOpenAlex for { <https://semopenalex.org/work/W1597951251> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W1597951251 abstract "In this chapter, a hybrid ACOR-based artificial neural network is investigated and applied to solve a Direction of Arrival (DoA) estimation problem. This approach is compared with Radial Basis Function Neural Network (RBFNN) that has been used broadly in the literature for DoA estimation. The Ant Colony Optimization is a stochastic optimization technique that has attracted much attention towards numerous optimization problems during the past decade. ACO is a subset of swarm intelligence methods in which the collective intelligence emerges in decentralized and self-organized systems with simple individuals. Social insects are distributed systems that carry out complex tasks, having individuals with very simple and rudimentary cognitive abilities. In many cases, these tasks exceed the capabilities of a single individual. In fact, social insects are self-organized systems and some simple principles and processes such as stigmergy can explain their social behaviour. Stigmergy is an indirect communication among individuals, in which different entities communicate by modifying the environment. Ants possess very limited visual and vocal perceptive abilities and some types are totally blind. Hence, the only efficient communication channel in these species is various types of chemicals, which are called pheromones. One specific type of pheromone is the trail pheromone that is deposited for instance while searching for food and the other ants smell the pheromone and tend to follow the paths with high pheromone concentration. Therefore, by indirect communication via pheromone and the simple rule of following the higher density of pheromone, one complex colony-level behaviour is emerged which is finding the short paths to the food. This behaviour is quite above the capabilities of each ant. In fact this collective capability emerges out of microscopic simple processes of pheromone laying and pheromone following. Ant colony optimization is an algorithm, which models foraging behaviour of ants to solve optimization problems and it has inspired many researchers to provide solutions to various combinatorial optimization problems such as travelling salesman problem (Dorigo et al., 1996), routing problem (Schoonderwoerd et al., 1997) and many other NP-hard problems in which the values for discrete variables are found to optimize an objective function. In fact ACO, models ant agents walking on a graph that implies typical discrete problems or structures. Since ACO was originally proposed for discrete optimization problems, its application to continuous domain was not straightforward. Among various adaptations of" @default.
- W1597951251 created "2016-06-24" @default.
- W1597951251 creator A5049110825 @default.
- W1597951251 date "2011-02-04" @default.
- W1597951251 modified "2023-09-23" @default.
- W1597951251 title "Application of Continuous ACOR to Neural Network Training: Direction of Arrival Problem" @default.
- W1597951251 cites W1545861347 @default.
- W1597951251 cites W1573676079 @default.
- W1597951251 cites W1580291878 @default.
- W1597951251 cites W1595870065 @default.
- W1597951251 cites W1964559261 @default.
- W1597951251 cites W1975009952 @default.
- W1597951251 cites W2043226657 @default.
- W1597951251 cites W2053913299 @default.
- W1597951251 cites W2056506919 @default.
- W1597951251 cites W2070448096 @default.
- W1597951251 cites W2089670420 @default.
- W1597951251 cites W2098293814 @default.
- W1597951251 cites W2103263585 @default.
- W1597951251 cites W2107941094 @default.
- W1597951251 cites W2124253297 @default.
- W1597951251 cites W2130058948 @default.
- W1597951251 cites W2131654448 @default.
- W1597951251 cites W2132279897 @default.
- W1597951251 cites W2137111583 @default.
- W1597951251 cites W2535058587 @default.
- W1597951251 doi "https://doi.org/10.5772/13611" @default.
- W1597951251 hasPublicationYear "2011" @default.
- W1597951251 type Work @default.
- W1597951251 sameAs 1597951251 @default.
- W1597951251 citedByCount "0" @default.
- W1597951251 crossrefType "book-chapter" @default.
- W1597951251 hasAuthorship W1597951251A5049110825 @default.
- W1597951251 hasBestOaLocation W15979512511 @default.
- W1597951251 hasConcept C127413603 @default.
- W1597951251 hasConcept C153294291 @default.
- W1597951251 hasConcept C154945302 @default.
- W1597951251 hasConcept C205649164 @default.
- W1597951251 hasConcept C22212356 @default.
- W1597951251 hasConcept C2777211547 @default.
- W1597951251 hasConcept C3017552255 @default.
- W1597951251 hasConcept C41008148 @default.
- W1597951251 hasConcept C50644808 @default.
- W1597951251 hasConceptScore W1597951251C127413603 @default.
- W1597951251 hasConceptScore W1597951251C153294291 @default.
- W1597951251 hasConceptScore W1597951251C154945302 @default.
- W1597951251 hasConceptScore W1597951251C205649164 @default.
- W1597951251 hasConceptScore W1597951251C22212356 @default.
- W1597951251 hasConceptScore W1597951251C2777211547 @default.
- W1597951251 hasConceptScore W1597951251C3017552255 @default.
- W1597951251 hasConceptScore W1597951251C41008148 @default.
- W1597951251 hasConceptScore W1597951251C50644808 @default.
- W1597951251 hasLocation W15979512511 @default.
- W1597951251 hasLocation W15979512512 @default.
- W1597951251 hasOpenAccess W1597951251 @default.
- W1597951251 hasPrimaryLocation W15979512511 @default.
- W1597951251 hasRelatedWork W1997965068 @default.
- W1597951251 hasRelatedWork W2101017737 @default.
- W1597951251 hasRelatedWork W2159443810 @default.
- W1597951251 hasRelatedWork W2356271281 @default.
- W1597951251 hasRelatedWork W2386387936 @default.
- W1597951251 hasRelatedWork W3001020386 @default.
- W1597951251 hasRelatedWork W3107474891 @default.
- W1597951251 hasRelatedWork W4362499384 @default.
- W1597951251 hasRelatedWork W644753246 @default.
- W1597951251 hasRelatedWork W1629725936 @default.
- W1597951251 isParatext "false" @default.
- W1597951251 isRetracted "false" @default.
- W1597951251 magId "1597951251" @default.
- W1597951251 workType "book-chapter" @default.