Matches in SemOpenAlex for { <https://semopenalex.org/work/W1598346960> ?p ?o ?g. }
- W1598346960 abstract "We study the probability of a given element, in the commutator subgroup of a group, to be equal to a commutator of two randomly chosen group elements, and compute explicit formulas for calculating this probability for some interesting classes of groups having only two different conjugacy class sizes. We re-prove the fact that if G is a finite group such that the set of its conjugacy class sizes is {1,p}, where p is a prime integer, then G is isoclinic (in the sense of P. Hall) to an extraspecial p-group. Notice that for a given element g ∈ G, Prg(G) measures the probability that the commutator of two randomly chosen group elements is equal to g. Obviously, when g = 1, Prg(G) = Pr(G). Pournaki and Sobhani (12) mainly studied Prg(G) for finite groups G which have only two different irreducible complex character degrees and obtained an impressive formula for Prg(G) for such groups G. In particular, using character theoretic techniques, they obtained explicit formulas for Prg(G), when G is a finite group with |2(G)| = p, where p is a prime integer and 2(G) denotes the commutator subgroup of G. In this situation, there can only be two cases, namely, (i) 2(G) ≤ Z(G) or (ii) 2(G) ∩ Z(G) = 1, where Z(G) denotes the center of G. These are the cases which were studied by Rusin (13) in 1979 and explicit formulas were ontained for Pr(G). For finite groups G which have only two different irreducible complex character degrees 1 and m (say), they proved (12, Theorem 2.2) that for each 1 6 g ∈ K(G), (1.1) Prg(G) = (1/|2(G)|)(1 − 1/m 2 ), where K(G) denotes the set of all commutators in G. We assume that 1 ∈ K(G). Motivated by the results of Rusin (13), and Pournaki and Sobhani (12), we investigate Prg(G) for some classes of finite groups G which have only two different conjugacy class sizes. Explicit formulas are obtained for some interesting classes of finite groups using purely group theoretic techniques. A finite group G is said to be a Camina group if x G = x2(G) for all" @default.
- W1598346960 created "2016-06-24" @default.
- W1598346960 creator A5033205784 @default.
- W1598346960 creator A5077316768 @default.
- W1598346960 date "2012-12-18" @default.
- W1598346960 modified "2023-09-27" @default.
- W1598346960 title "PROBABILITY THAT A GIVEN ELEMENT OF A GROUP IS A COMMUTATOR OF ANY TWO RANDOMLY CHOSEN GROUP ELEMENTS" @default.
- W1598346960 cites W1560591077 @default.
- W1598346960 cites W1967561450 @default.
- W1598346960 cites W1968984956 @default.
- W1598346960 cites W1972778573 @default.
- W1598346960 cites W1981028004 @default.
- W1598346960 cites W1981650639 @default.
- W1598346960 cites W1988718724 @default.
- W1598346960 cites W2033032464 @default.
- W1598346960 cites W2083335884 @default.
- W1598346960 cites W2119866188 @default.
- W1598346960 cites W2129545239 @default.
- W1598346960 cites W2142613421 @default.
- W1598346960 hasPublicationYear "2012" @default.
- W1598346960 type Work @default.
- W1598346960 sameAs 1598346960 @default.
- W1598346960 citedByCount "0" @default.
- W1598346960 crossrefType "posted-content" @default.
- W1598346960 hasAuthorship W1598346960A5033205784 @default.
- W1598346960 hasAuthorship W1598346960A5077316768 @default.
- W1598346960 hasConcept C105515060 @default.
- W1598346960 hasConcept C114614502 @default.
- W1598346960 hasConcept C118615104 @default.
- W1598346960 hasConcept C121332964 @default.
- W1598346960 hasConcept C136119220 @default.
- W1598346960 hasConcept C140865510 @default.
- W1598346960 hasConcept C145620117 @default.
- W1598346960 hasConcept C17744445 @default.
- W1598346960 hasConcept C184992742 @default.
- W1598346960 hasConcept C185592680 @default.
- W1598346960 hasConcept C199360897 @default.
- W1598346960 hasConcept C199539241 @default.
- W1598346960 hasConcept C200288055 @default.
- W1598346960 hasConcept C202444582 @default.
- W1598346960 hasConcept C2777404646 @default.
- W1598346960 hasConcept C2779463800 @default.
- W1598346960 hasConcept C2781311116 @default.
- W1598346960 hasConcept C33923547 @default.
- W1598346960 hasConcept C41008148 @default.
- W1598346960 hasConcept C62520636 @default.
- W1598346960 hasConcept C73648015 @default.
- W1598346960 hasConcept C8010536 @default.
- W1598346960 hasConcept C87945829 @default.
- W1598346960 hasConcept C97137487 @default.
- W1598346960 hasConceptScore W1598346960C105515060 @default.
- W1598346960 hasConceptScore W1598346960C114614502 @default.
- W1598346960 hasConceptScore W1598346960C118615104 @default.
- W1598346960 hasConceptScore W1598346960C121332964 @default.
- W1598346960 hasConceptScore W1598346960C136119220 @default.
- W1598346960 hasConceptScore W1598346960C140865510 @default.
- W1598346960 hasConceptScore W1598346960C145620117 @default.
- W1598346960 hasConceptScore W1598346960C17744445 @default.
- W1598346960 hasConceptScore W1598346960C184992742 @default.
- W1598346960 hasConceptScore W1598346960C185592680 @default.
- W1598346960 hasConceptScore W1598346960C199360897 @default.
- W1598346960 hasConceptScore W1598346960C199539241 @default.
- W1598346960 hasConceptScore W1598346960C200288055 @default.
- W1598346960 hasConceptScore W1598346960C202444582 @default.
- W1598346960 hasConceptScore W1598346960C2777404646 @default.
- W1598346960 hasConceptScore W1598346960C2779463800 @default.
- W1598346960 hasConceptScore W1598346960C2781311116 @default.
- W1598346960 hasConceptScore W1598346960C33923547 @default.
- W1598346960 hasConceptScore W1598346960C41008148 @default.
- W1598346960 hasConceptScore W1598346960C62520636 @default.
- W1598346960 hasConceptScore W1598346960C73648015 @default.
- W1598346960 hasConceptScore W1598346960C8010536 @default.
- W1598346960 hasConceptScore W1598346960C87945829 @default.
- W1598346960 hasConceptScore W1598346960C97137487 @default.
- W1598346960 hasLocation W15983469601 @default.
- W1598346960 hasOpenAccess W1598346960 @default.
- W1598346960 hasPrimaryLocation W15983469601 @default.
- W1598346960 hasRelatedWork W1775797733 @default.
- W1598346960 hasRelatedWork W1975619902 @default.
- W1598346960 hasRelatedWork W2010904206 @default.
- W1598346960 hasRelatedWork W2036198116 @default.
- W1598346960 hasRelatedWork W2084026544 @default.
- W1598346960 hasRelatedWork W2133647997 @default.
- W1598346960 hasRelatedWork W2200224570 @default.
- W1598346960 hasRelatedWork W2294676087 @default.
- W1598346960 hasRelatedWork W2347496293 @default.
- W1598346960 hasRelatedWork W2348244861 @default.
- W1598346960 hasRelatedWork W2376669670 @default.
- W1598346960 hasRelatedWork W2617094696 @default.
- W1598346960 hasRelatedWork W2753511761 @default.
- W1598346960 hasRelatedWork W2784535059 @default.
- W1598346960 hasRelatedWork W2963071451 @default.
- W1598346960 hasRelatedWork W2963776765 @default.
- W1598346960 hasRelatedWork W2964064737 @default.
- W1598346960 hasRelatedWork W3021781364 @default.
- W1598346960 hasRelatedWork W3086980090 @default.
- W1598346960 hasRelatedWork W3098797007 @default.
- W1598346960 isParatext "false" @default.
- W1598346960 isRetracted "false" @default.
- W1598346960 magId "1598346960" @default.